cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A098974 Primes p such that q-p = 24, where q is the next prime after p.

Original entry on oeis.org

1669, 2179, 4177, 4523, 4759, 5237, 6173, 6397, 6737, 7079, 7369, 7793, 8123, 8329, 9067, 11003, 11633, 11839, 12073, 12119, 13009, 13267, 16033, 16193, 16453, 16763, 16787, 17053, 17683, 17989, 18593, 18637, 19183, 19507, 20483, 22409, 22877, 23227
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Oct 23 2004

Keywords

Comments

Lower prime of a difference of 24 between consecutive primes.
23 successive numbers after prime number p are composite. - Artur Jasinski, Jan 15 2007

Crossrefs

Programs

  • Mathematica
    a = {}; Do[If[Prime[x + 1] - Prime[x] == 24, AppendTo[a, Prime[x]]], {x, 1, 10000}]; a (* Artur Jasinski, Jan 15 2007 *)

Extensions

Entry revised by N. J. A. Sloane, Feb 13 2007

A204099 Number of integers between successive twin prime pairs.

Original entry on oeis.org

0, 3, 3, 9, 9, 15, 9, 27, 3, 27, 9, 27, 9, 3, 27, 9, 27, 9, 27, 33, 69, 9, 27, 57, 45, 27, 15, 21, 15, 147, 9, 3, 27, 21, 135, 9, 15, 9, 27, 57, 75, 45, 9, 9, 15, 105, 21, 27, 3, 117, 9, 45, 27, 21, 63, 81, 3, 51, 15, 45, 27, 51, 3, 21, 15, 9, 93, 27, 39
Offset: 1

Views

Author

Michel Lagneau, Jan 10 2012

Keywords

Comments

a(n) is divisible by 3.

Examples

			a(1) = 0 because (3,5) is adjacent to (5,7); a(2) = 3 because the numbers 8, 9 and 10 are between (5,7) and (11,13), ...
		

Crossrefs

Programs

  • Maple
    T:=array(1..100,1..2):k:=0:for n from 1 to 1000 do:p1:=ithprime(n):p2:=ithprime(n+1):if p2-p1 = 2 then k:=k+1:T[k,1]:=p1:T[k,2]:=p2:else fi:od: for p from 2 to k do:x:= T[p+1,1]- T[p,2]: printf(`%d, `,x-1):od:
  • Mathematica
    Module[{tr=Transpose[Select[Partition[Prime[Range[450]],2,1],#[[2]]- #[[1]] == 2&]],fir,las},fir=Rest[tr[[1]]];las=Most[tr[[2]]];Flatten[Abs[ Differences/@ Thread[{fir,las}]]]-1/.{-1->0}] (* Harvey P. Dale, Jun 11 2014 *)

Formula

a(n) = A167132(n) - 1.
a(n) = A063091(n+1) - A063091(n) - 3.

A204100 Number of integers between successive twin primes, divided by 3.

Original entry on oeis.org

0, 1, 1, 3, 3, 5, 3, 9, 1, 9, 3, 9, 3, 1, 9, 3, 9, 3, 9, 11, 23, 3, 9, 19, 15, 9, 5, 7, 5, 49, 3, 1, 9, 7, 45, 3, 5, 3, 9, 19, 25, 15, 3, 3, 5, 35, 7, 9, 1, 39, 3, 15, 9, 7, 21, 27, 1, 17, 5, 15, 9, 17, 1, 7, 5, 3, 31, 9, 13, 9, 13, 55, 13, 21, 9, 7, 5, 19
Offset: 1

Views

Author

Michel Lagneau, Jan 10 2012

Keywords

Examples

			a(2) = 1 because there exists three numbers 8, 9 and 10 between (5,7) and (11,13) => a(2) = 3/3 = 1.
		

Crossrefs

Programs

  • Maple
    T:=array(1..100,1..2):k:=0:for n from 1 to 1000 do:p1:=ithprime(n):p2:=ithprime(n+1):if p2-p1 = 2 then k:=k+1:T[k,1]:=p1:T[k,2]:=p2:else fi:od: for p from 2 to k do:x:= T[p+1,1]- T[p,2]: printf(`%d, `,(x-1)/3):od:
  • Mathematica
    Join[{0},Rest[(#[[2]]-#[[1]]-1)/3&/@Partition[Rest[Flatten[Select[ Partition[ Prime[Range[500]],2,1],#[[2]]-#[[1]]==2&]]],2]]] (* Harvey P. Dale, Jan 10 2016 *)

Formula

a(n) = (A063091(n+1)- A063091(n)-3)/3 = A204099(n)/3

A066728 a(n) is the number of integers of the form (n+k+n*k)/(n-k) for k = 1,2,...,n-1.

Original entry on oeis.org

0, 1, 1, 3, 1, 4, 2, 4, 2, 7, 1, 7, 3, 5, 3, 8, 1, 11, 3, 7, 3, 9, 2, 9, 5, 7, 3, 15, 1, 13, 3, 6, 7, 11, 3, 11, 3, 9, 3, 19, 1, 15, 5, 7, 5, 11, 2, 17, 5, 11, 3, 15, 3, 19, 7, 9, 3, 15, 1, 15, 5, 7, 11, 15, 3, 15, 3, 15, 3, 29, 1, 14, 5, 7, 11, 15, 3, 23, 4, 11, 4, 15, 3, 15, 7, 9, 3, 29, 3, 23
Offset: 1

Views

Author

Benoit Cloitre, Jan 15 2002

Keywords

Comments

a(n) = 1 iff n is 2 or the lesser of twin primes (for n >= 3, n follows the sequence A001359).
Also the number of factors of n*(n+2) which are less than n. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 02 2003

Examples

			(4 + 1 + 4*1)/(4 - 1), (4 + 2 + 4*2)/(4 - 2), and (4 + 3 + 4*3)/(4 - 1) are integers, hence a(4) = 3.
		

Crossrefs

Programs

  • Maple
    with(numtheory):A066728 := n->ceil(tau(n*(n+2))/2)-1;
  • Mathematica
    a[n_] := Ceiling[DivisorSigma[0, n*(n+2)] / 2]  - 1; Array[a, 100] (* Amiram Eldar, Feb 01 2025 *)
  • PARI
    a(n) = ceil(numdiv(n*(n+2))/2) - 1; \\ Amiram Eldar, Feb 01 2025

Formula

a(n) = ceiling( d(n*(n+2)) / 2 ) - 1, where d(n) = number of divisors of n (A000005). - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 02 2003

A176180 Primes p such that gcd(p(n)-1, p(n+1)-1) != gcd(p(n)+1, p(n+1)+1).

Original entry on oeis.org

7, 13, 19, 23, 31, 37, 43, 47, 53, 61, 67, 73, 79, 83, 89, 97, 103, 109, 113, 127, 131, 139, 151, 157, 163, 167, 173, 181, 193, 199, 211, 223, 229, 233, 241, 251, 257, 263, 271, 277, 293, 307, 313, 331, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 421
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p0=Prime[n];p1=Prime[n+1];If[GCD[p0-1,p1-1]!=GCD[p0+1,p1+1],AppendTo[lst,p0]],{n,6!}];lst

A176181 Primes p(n) such that gcd(p(n)-1, p(n+1)-1) > gcd(p(n)+1, p(n+1)+1).

Original entry on oeis.org

13, 31, 37, 61, 73, 89, 97, 109, 113, 151, 157, 181, 193, 199, 211, 229, 241, 271, 277, 313, 331, 349, 367, 373, 389, 397, 401, 421, 433, 449, 457, 523, 541, 571, 601, 607, 613, 619, 631, 661, 673, 691, 701, 727, 733, 751, 757, 761, 769, 811, 853, 877, 929
Offset: 1

Views

Author

Keywords

Comments

Sequence does not contain any lesser of twin primes A001359. (Proof. If p(n+1) = p(n)+2, then gcd(p(n)-1, p(n+1)-1) = 2 = gcd(p(n)+1, p(n+1)+1), so p(n) is not a term.) - Jonathan Sondow, Feb 03 2012

Crossrefs

Programs

  • Mathematica
    lst={}; Do[p0=Prime[n]; p1=Prime[n+1]; If[GCD[p0-1,p1-1] > GCD[p0+1,p1+1], AppendTo[lst,p0]], {n,200}]; lst
    Transpose[Select[Partition[Prime[Range[200]],2,1],GCD@@(#-1)>GCD@@(#+1)&]] [[1]] (* Harvey P. Dale, Sep 30 2014 *)

Extensions

Definition clarified by Jonathan Sondow, Feb 03 2012

A176182 Primes p(n) such that gcd(p(n)-1, p(n+1)-1) < gcd(p(n)+1, p(n+1)+1).

Original entry on oeis.org

7, 19, 23, 43, 47, 53, 67, 79, 83, 103, 127, 131, 139, 163, 167, 173, 223, 233, 251, 257, 263, 293, 307, 353, 359, 379, 383, 409, 439, 443, 463, 467, 479, 487, 491, 499, 503, 509, 557, 563, 587, 593, 643, 647, 653, 677, 683, 709, 719, 739, 743, 797, 823, 829
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    lst={};Do[p0=Prime[n];p1=Prime[n+1];If[GCD[p0-1,p1-1]Harvey P. Dale, Jul 06 2011 *)
Showing 1-7 of 7 results.