cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A099013 a(n) = Sum_{k=0..n} 3^(k-1)*Fibonacci(k).

Original entry on oeis.org

0, 1, 4, 22, 103, 508, 2452, 11929, 57856, 280930, 1363495, 6618856, 32128024, 155953777, 757013548, 3674624638, 17836995847, 86582609284, 420280790476, 2040085854985, 9902784679240, 48069126732586, 233332442310919
Offset: 0

Views

Author

Paul Barry, Sep 22 2004

Keywords

Comments

Partial sums of A099012. Binomial transform of A063092 (with leading 0).

Crossrefs

Programs

  • Magma
    I:=[0, 1, 4]; [n le 3 select I[n] else 4*Self(n-1)+6*Self(n-2)-9*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 25 2012
    
  • Mathematica
    Join[{a=0,b=1},Table[c=3*b+9*a+1;a=b;b=c,{n,60}]] (* Vladimir Joseph Stephan Orlovsky, Jan 18 2011 *)
    Table[Sum[3^(k-1) Fibonacci[k],{k,0,n}],{n,0,30}] (* or *) LinearRecurrence[{4,6,-9},{0,1,4},30] (* Harvey P. Dale, Dec 09 2011 *)
    CoefficientList[Series[x/((1-x)(1-3x-9x^2)),{x,0,40}],x] (* Vincenzo Librandi, Jun 25 2012 *)
  • PARI
    x='x+O('x^30); concat([0], Vec(x/((1-x)*(1 - 3*x - 9*x^2)))) \\ G. C. Greubel, Dec 31 2017

Formula

G.f.: x/((1-x)*(1 - 3*x - 9*x^2)).
a(n) = 4*a(n-1) + 6*a(n-2) - 9*a(n-3).
a(n) = 3^(n-1)*Sum_{k=0..n} Fibonacci(n-k)*3^(-k).
a(n) = (3/2 + 3*sqrt(5)/2)^n*(1/22 + 7*sqrt(5)/110) + (1/22 - 7*sqrt(5)/110)*(3/2 - 3*sqrt(5)/2)^n - 1/11.
a(n) = (3^n*A000285(n) - 1)/11, the case m = 3 of Sum_{k=0..n} m^(k-1)*F(k) = (m^n*(m*F(n) + F(n+1)) - 1)/(m^2 + m - 1), F=A000045. - Ehren Metcalfe, Apr 29 2018

Extensions

Sign in second formula corrected by Harvey P. Dale, Dec 09 2011

A129710 Triangle read by rows: T(n,k) is the number of Fibonacci binary words of length n and having k 01 subwords (0 <= k <= floor(n/2)). A Fibonacci binary word is a binary word having no 00 subword.

Original entry on oeis.org

1, 2, 2, 1, 2, 3, 2, 5, 1, 2, 7, 4, 2, 9, 9, 1, 2, 11, 16, 5, 2, 13, 25, 14, 1, 2, 15, 36, 30, 6, 2, 17, 49, 55, 20, 1, 2, 19, 64, 91, 50, 7, 2, 21, 81, 140, 105, 27, 1, 2, 23, 100, 204, 196, 77, 8, 2, 25, 121, 285, 336, 182, 35, 1, 2, 27, 144, 385, 540, 378, 112, 9, 2, 29, 169, 506
Offset: 0

Views

Author

Emeric Deutsch, May 12 2007

Keywords

Comments

Also number of Fibonacci binary words of length n and having k 10 subwords.
Row n has 1+floor(n/2) terms.
Row sums are the Fibonacci numbers (A000045).
T(n,0)=2 for n >= 1.
Sum_{k>=0} k*T(n,k) = A023610(n-2).
Triangle, with zeros omitted, given by (2, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 14 2012
Riordan array ((1+x)/(1-x), x^2/(1-x)), zeros omitted. - Philippe Deléham, Jan 14 2012

Examples

			T(5,2)=4 because we have 10101, 01101, 01010 and 01011.
Triangle starts:
  1;
  2;
  2, 1;
  2, 3;
  2, 5, 1;
  2, 7, 4;
  2, 9, 9, 1;
Triangle (2, -1, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, ...) begins:
  1;
  2, 0;
  2, 1, 0;
  2, 3, 0, 0;
  2, 5, 1, 0, 0;
  2, 7, 4, 0, 0, 0;
  2, 9, 9, 1, 0, 0, 0;
		

Crossrefs

Programs

  • Maple
    T:=proc(n,k) if n=0 and k=0 then 1 elif k<=floor(n/2) then binomial(n-k,k)+binomial(n-k-1,k) else 0 fi end: for n from 0 to 18 do seq(T(n,k),k=0..floor(n/2)) od; # yields sequence in triangular form
  • Mathematica
    MapAt[# - 1 &, #, 1] &@ Table[Binomial[n - k, k] + Binomial[n - k - 1, k], {n, 0, 16}, {k, 0, Floor[n/2]}] // Flatten (* Michael De Vlieger, Nov 15 2019 *)

Formula

T(n,k) = binomial(n-k,k) + binomial(n-k-1,k) for n >= 1 and 0 <= k <= floor(n/2).
G.f. = G(t,z) = (1+z)/(1-z-tz^2).
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A078050(n), A057079(n), A040000(n), A000045(n+2), A000079(n), A006138(n), A026597(n), A133407(n), A133467(n), A133469(n), A133479(n), A133558(n), A133577(n), A063092(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 respectively. - Philippe Deléham, Jan 14 2012
T(n,k) = T(n-1,k) + T(n-2,k-1) with T(0,0)=1, T(1,0)=2, T(1,1)=0 and T(n,k) = 0 if k > n or if k < 0. - Philippe Deléham, Jan 14 2012

A209599 Triangle T(n,k), read by rows, given by (2, -1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 5, 3, 0, 0, 8, 7, 1, 0, 0, 13, 15, 4, 0, 0, 0, 21, 30, 12, 1, 0, 0, 0, 34, 58, 31, 5, 0, 0, 0, 0, 55, 109, 73, 18, 1, 0, 0, 0, 0, 89, 201, 162, 54, 6, 0, 0, 0, 0, 0, 144, 365, 344, 145, 25, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 10 2012

Keywords

Comments

A skew version of A122075.

Examples

			Triangle begins :
  1
  2, 0
  3, 1, 0
  5, 3, 0, 0
  8, 7, 1, 0, 0
  13, 15, 4, 0, 0, 0
  21, 30, 12, 1, 0, 0, 0
  34, 58, 31, 5, 0, 0, 0, 0
  55, 109, 73, 18, 1, 0, 0, 0, 0
  89, 201, 162, 54, 6, 0, 0, 0, 0, 0
  144, 365, 344, 145, 25, 1, 0, 0, 0, 0, 0
  ...
		

Crossrefs

Programs

  • Mathematica
    T[0, 0] := 1; T[1, 0] := 2; T[1, 1] := 0; T[n_, k_] := T[n, k] = If[n<0, 0, If[k > n, 0, T[n - 1, k] + T[n - 2, k] + T[n - 2, k - 1]]]; Table[T[n, k], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Dec 19 2017 *)

Formula

G.f.: (1+x)/(1-x-(1+y)*x^2).
T(n,k) = T(n-1,k) + T(n-2,k) + T(n-2,k-1), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0, T(n,k) = 0 if k<0 or if k>n.
Sum_{k, 0<=k<=n} T(n,k)*x^k = A040000(n), A000045(n+2), A000079(n), A006138(n), A026597(n), A133407(n), A133467(n), A133469(n), A133479(n), A133558(n), A133577(n), A063092(n) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively.
Showing 1-3 of 3 results.