cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063445 Moebius transform of f(x) = EulerPhi(x^2) function (A002618).

Original entry on oeis.org

1, 1, 5, 6, 19, 5, 41, 24, 48, 19, 109, 30, 155, 41, 95, 96, 271, 48, 341, 114, 205, 109, 505, 120, 480, 155, 432, 246, 811, 95, 929, 384, 545, 271, 779, 288, 1331, 341, 775, 456, 1639, 205, 1805, 654, 912, 505, 2161, 480, 2016, 480, 1355, 930, 2755, 432
Offset: 1

Views

Author

Labos Elemer, Jul 24 2001

Keywords

Comments

Same as Moebius transform of g(x) = x*EulerPhi(x). - Benoit Cloitre, Apr 05 2002

Examples

			For n=20, divisors = {1,2,4,5,10,20}, phi(d^2) = {1,2,8,20,40,160}, mu(20/d) = {0,1,-1,0,-1,1}, a(20) = 0 + 2 - 8 + 0 - 40 + 160 = 114.
a(20) = a(4)*a(5) = (16 - 8 - 4 + 2)*(25 - 5 - 1) = 6*19 = 114.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[EulerPhi[d]*MoebiusMu[n/d]*d, {d, Divisors[n]}], {n, 1, 50}] (* Vaclav Kotesovec, Feb 01 2019 *)
  • PARI
    a(n)=if(n<1,0,sumdiv(n,d,d*eulerphi(d)*moebius(n/d)))

Formula

a(n) = Sum_{d|n} phi(d^2)*mu(n/d).
Multiplicative with a(p) = p^2 - p - 1 and a(p^e) = p^(2*e) - p^(2*e-1) - p^(2*e-2) + p^(2*e-3), e > 1. - Vladeta Jovovic, Jul 29 2001
Dirichlet g.f. zeta(s-2)/(zeta(s)*zeta(s-1)). - R. J. Mathar, Feb 09 2011
Sum_{k=1..n} a(k) ~ 2*n^3 / (Pi^2 * Zeta(3)). - Vaclav Kotesovec, Feb 01 2019
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + 1/(p^2-p-1) + p/((p-1)^3 * (p+1)^2)) = 3.037448431566721466562170968413075105160439538735056586164601312913619316... - Vaclav Kotesovec, Sep 20 2020
a(n) = Sum_{1 <= i, j <= n} gcd(i, j, n)*moebius(gcd(i, j, n)) = Sum_{d divides n} d*moebius(d)*J_2(n/d), where J_2 is the Jordan totient function A007434. - Peter Bala, Jan 21 2024