A063493 a(n) = (2*n-1)*(13*n^2-13*n+6)/6.
1, 16, 70, 189, 399, 726, 1196, 1835, 2669, 3724, 5026, 6601, 8475, 10674, 13224, 16151, 19481, 23240, 27454, 32149, 37351, 43086, 49380, 56259, 63749, 71876, 80666, 90145, 100339, 111274, 122976, 135471, 148785, 162944, 177974, 193901, 210751, 228550, 247324, 267099
Offset: 1
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (10).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(2*n-1)*(13*n^2-13*n+6)/6: n in [1..40]]; // Vincenzo Librandi, Dec 16 2015
-
Mathematica
Table[(2 n - 1) (13 n^2 - 13 n + 6)/6, {n, 1, 40}] (* Bruno Berselli, Dec 16 2015 *) LinearRecurrence[{4,-6,4,-1}, {1,16,70,189}, 30] (* G. C. Greubel, Dec 01 2017 *)
-
PARI
a(n) = { (2*n - 1)*(13*n^2 - 13*n + 6)/6 } \\ Harry J. Smith, Aug 23 2009
-
PARI
my(x='x+O('x^30)); Vec(serlaplace((-6+12*x+39*x^2+26*x^3)*exp(x)/6 + 1)) \\ G. C. Greubel, Dec 01 2017
-
Python
A063493_list, m = [], [26, -13, 2, 1] for _ in range(10**2): A063493_list.append(m[-1]) for i in range(3): m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
Formula
G.f.: x*(1+x)*(1+11*x+x^2)/(1-x)^4. - Colin Barker, Apr 20 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3. - Vincenzo Librandi, Dec 16 2015
E.g.f.: (-6 + 12*x + 39*x^2 + 26*x^3)*exp(x)/6 + 1. - G. C. Greubel, Dec 01 2017