A063521 a(n) = n*(7*n^2-4)/3.
0, 1, 16, 59, 144, 285, 496, 791, 1184, 1689, 2320, 3091, 4016, 5109, 6384, 7855, 9536, 11441, 13584, 15979, 18640, 21581, 24816, 28359, 32224, 36425, 40976, 45891, 51184, 56869, 62960, 69471, 76416, 83809, 91664, 99995, 108816, 118141, 127984, 138359, 149280, 160761
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
Crossrefs
Programs
-
Maple
A063521:=n->n*(7*n^2-4)/3; seq(A063521(k), k=0..100); # Wesley Ivan Hurt, Oct 24 2013
-
Mathematica
lst={};Do[AppendTo[lst, n*(7*n^2-4)/3], {n, 1, 6!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 02 2008 *) CoefficientList[Series[x*(1+12*x+x^2)/(1-x)^4, {x, 0, 50}], x] (* G. C. Greubel, Sep 01 2017 *)
-
PARI
a(n) = { n*(7*n^2 - 4)/3 } \\ Harry J. Smith, Aug 25 2009
Formula
G.f.: x*(1+12*x+x^2)/(1-x)^4. - Colin Barker, Jan 10 2012
E.g.f.: (x/3)*(3 + 21*x + 7*x^2)*exp(x). - G. C. Greubel, Sep 01 2017
Comments