A063522 a(n) = n*(5*n^2 - 3)/2.
0, 1, 17, 63, 154, 305, 531, 847, 1268, 1809, 2485, 3311, 4302, 5473, 6839, 8415, 10216, 12257, 14553, 17119, 19970, 23121, 26587, 30383, 34524, 39025, 43901, 49167, 54838, 60929, 67455, 74431, 81872, 89793, 98209, 107135, 116586, 126577, 137123, 148239, 159940
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1).
Crossrefs
Programs
-
Magma
[n*(5*n^2 -3)/2: n in [0..30]]; // G. C. Greubel, May 02 2018
-
Mathematica
lst={};Do[AppendTo[lst, LegendreP[3, n]], {n, 10^2}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 11 2008 *) CoefficientList[Series[x*(1 + 13*x + x^2)/(1-x)^4, {x, 0, 50}], x] (* G. C. Greubel, Sep 01 2017 *) LinearRecurrence[{4,-6,4,-1},{0,1,17,63},40] (* Harvey P. Dale, Sep 06 2023 *)
-
PARI
a(n) = { n*(5*n^2 - 3)/2 } \\ Harry J. Smith, Aug 25 2009
Formula
G.f.: x*(1 + 13*x + x^2)/(1-x)^4. - Colin Barker, Jan 10 2012
E.g.f.: (x/2)*(2 + 15*x + 5*x^2)*exp(x). - G. C. Greubel, Sep 01 2017