A063527 Numbers that are divisible by all of their 1 and 2 digit substrings.
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22, 24, 33, 36, 44, 48, 55, 66, 77, 88, 99, 1111, 1155, 1248, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9999, 27216, 31248, 111111, 116688, 121212, 142128, 212184, 222222, 242424, 313131, 321216, 333333, 363636, 368424, 444444
Offset: 1
Examples
1155 is divisible by 1, 1, 5, 5, 11, 15 and 55.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10442
- Index entries for 10-automatic sequences.
Crossrefs
Cf. A034838 (integers divisible by all their digits).
Programs
-
Mathematica
d12Q[n_]:=Module[{idn=IntegerDigits[n],idn2},idn2=FromDigits/@Partition[ idn,2,1];FreeQ[idn,0]&&And@@Divisible[n,idn]&&And@@Divisible[n,idn2]]; Select[Range[400000],d12Q] (* Harvey P. Dale, Aug 11 2015 *)
-
PARI
is(n) = {my(d = digits(n), t = 0); s = Set(d); if(s[1] == 0, return(0)); for(i = 1, 2, for(j = 1, #d - i + 1, t++; fr = fromdigits(vector(i, k, d[j+k-1])); if(n % fr != 0, return(0)); ) ); 1 } \\ David A. Corneth, Sep 17 2019
-
Python
from itertools import product A063527_list = [] for g in range(1,7): for n in product('123456789', repeat=g): s = ''.join(n) m = int(s) if not any([m % int(d) for d in s]): for i in range(len(s)-1): if m % int(s[i:i+2]): break else: A063527_list.append(m) # Chai Wah Wu, Sep 18 2014
Extensions
More terms from David A. Corneth, Sep 17 2019
Comments