cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063527 Numbers that are divisible by all of their 1 and 2 digit substrings.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 15, 22, 24, 33, 36, 44, 48, 55, 66, 77, 88, 99, 1111, 1155, 1248, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9999, 27216, 31248, 111111, 116688, 121212, 142128, 212184, 222222, 242424, 313131, 321216, 333333, 363636, 368424, 444444
Offset: 1

Views

Author

Erich Friedman, Aug 01 2001

Keywords

Comments

Subsequence of A034838. - Michel Marcus, Sep 19 2014

Examples

			1155 is divisible by 1, 1, 5, 5, 11, 15 and 55.
		

Crossrefs

Cf. A034838 (integers divisible by all their digits).

Programs

  • Mathematica
    d12Q[n_]:=Module[{idn=IntegerDigits[n],idn2},idn2=FromDigits/@Partition[ idn,2,1];FreeQ[idn,0]&&And@@Divisible[n,idn]&&And@@Divisible[n,idn2]]; Select[Range[400000],d12Q] (* Harvey P. Dale, Aug 11 2015 *)
  • PARI
    is(n) = {my(d = digits(n), t = 0); s = Set(d); if(s[1] == 0, return(0)); for(i = 1, 2, for(j = 1, #d - i + 1, t++; fr = fromdigits(vector(i, k, d[j+k-1])); if(n % fr != 0, return(0)); ) ); 1 } \\ David A. Corneth, Sep 17 2019
  • Python
    from itertools import product
    A063527_list = []
    for g in range(1,7):
        for n in product('123456789', repeat=g):
            s = ''.join(n)
            m = int(s)
            if not any([m % int(d) for d in s]):
                for i in range(len(s)-1):
                    if m % int(s[i:i+2]):
                        break
                else:
                    A063527_list.append(m) # Chai Wah Wu, Sep 18 2014
    

Extensions

More terms from David A. Corneth, Sep 17 2019