cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A063533 Hypotenuses of special Pythagorean triples constructed from twin primes as follows: {u, w}={p,p+2}; side a=2p(p+2), side b=(p+2)^2-p^2 and the terms of sequence are values of c=a(n)=p^2+(p+2)^2=phi(a/2)+1+sigma(a/2)+1.

Original entry on oeis.org

34, 74, 290, 650, 1802, 3530, 7202, 10370, 20810, 23330, 38090, 45002, 64802, 73730, 78410, 103970, 115202, 145802, 159050, 194690, 242210, 352802, 373250, 426890, 544970, 649802, 720002, 763850, 824330, 871202, 1312202, 1351370
Offset: 1

Views

Author

Labos Elemer, Aug 02 2001

Keywords

Comments

Sum of the numbers on the corners of the square array that lists the numbers from 1..A014574(n)^2 in increasing order by rows. - Wesley Ivan Hurt, May 27 2023

Examples

			a(6) is obtained as follows: u = p = 41, w = p+2 = 43; a = 2*41*43 = 2*1763 = 3526; b = 43*2-41^2 = 1849-1681 = 168; c = 43^2+41^2 = 1849+1681 = 3530 = 1+phi(1763)+1+sigma(1763) = 1680+1848+2 = a(6); and 3526^2+168^2 = 3530^2.
		

Crossrefs

Formula

a(n) = 2 + A000203(A037074(n)) + A000010(A037074(n)) = A001359(n)^2 + A006512(n)^2.
a(n) = 2*(A014574(n)^2 + 1). - Wesley Ivan Hurt, May 27 2023

A063531 Numbers k such that sigma(k) + 1 is a square.

Original entry on oeis.org

2, 7, 8, 14, 15, 23, 32, 33, 35, 47, 54, 56, 57, 60, 72, 78, 79, 84, 87, 92, 95, 120, 123, 124, 128, 138, 143, 154, 165, 167, 174, 184, 190, 196, 213, 223, 235, 242, 252, 253, 258, 267, 295, 312, 315, 319, 323, 327, 348, 359, 375, 378, 380, 393, 412, 423, 439
Offset: 1

Views

Author

Labos Elemer, Aug 02 2001

Keywords

Comments

Numbers k such that A000203(k) = -1 + m^2 for some m.

Examples

			If k = p(p+2) is a product of twin primes (from A037074), then sigma(k) + 1 = 1 + (p+1)(p+3) = (p+2)^2, square of the larger twin. Other solutions can be either special primes = m^2 - 2 or composites like 120: sigma(120) = 120 + 60 + ... + 1 = 360 = 19^2 - 1. Square number solution is, e.g., 196: sigma(196) = 399 = 20^2 - 1.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[500],IntegerQ[Sqrt[DivisorSigma[1,#]+1]]&] (* Harvey P. Dale, Jul 02 2021 *)
  • PARI
    { n=0; for (a=1, 10^9, if (issquare(sigma(a) + 1), write("b063531.txt", n++, " ", a); if (n==1000, break)) ) } \\ Harry J. Smith, Aug 25 2009

Extensions

Minor edits from Franklin T. Adams-Watters, Aug 29 2009

A089952 Numbers n such that n+1 and phi(n)+1 are both perfect squares.

Original entry on oeis.org

15, 24, 35, 143, 168, 323, 575, 675, 728, 899, 1599, 1763, 2600, 3599, 3720, 5183, 5775, 10403, 11663, 19043, 19320, 21315, 22499, 29928, 32399, 36863, 38024, 39203, 47523, 51528, 51983, 54288, 57599, 67080, 72899, 79523, 93635, 97343
Offset: 1

Views

Author

Joseph L. Pe, Jan 17 2004

Keywords

Crossrefs

Intersection of A005563 and A063530.

Programs

  • Mathematica
    Select[Range[10^5], IntegerQ[Sqrt[ # + 1]] && IntegerQ[Sqrt[EulerPhi[ # ] + 1]] &]
Showing 1-3 of 3 results.