cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063726 a(n) = gcd(1 + Fibonacci(n+1), 1 + Fibonacci(n)).

Original entry on oeis.org

1, 2, 1, 1, 2, 3, 1, 2, 1, 7, 2, 5, 1, 18, 1, 13, 2, 47, 1, 34, 1, 123, 2, 89, 1, 322, 1, 233, 2, 843, 1, 610, 1, 2207, 2, 1597, 1, 5778, 1, 4181, 2, 15127, 1, 10946, 1, 39603, 2, 28657, 1, 103682, 1, 75025, 2, 271443, 1, 196418, 1, 710647, 2, 514229, 1, 1860498, 1
Offset: 0

Views

Author

Jason Earls, Aug 11 2001

Keywords

Crossrefs

Programs

  • GAP
    List([0..65],n->Gcd(1+Fibonacci(n+1),1+Fibonacci(n))); # Muniru A Asiru, Oct 09 2018
  • Magma
    [GCD(1 + Fibonacci(n+1), 1 + Fibonacci(n)): n in [0..50]]; // G. C. Greubel, Oct 08 2018
    
  • Maple
    with(combinat): seq(gcd(1+fibonacci(n+1),1+fibonacci(n)),n=0..65); # Muniru A Asiru, Oct 09 2018
  • Mathematica
    Table[GCD[Fibonacci[n],Fibonacci[n+1]+1],{n,5!}] (* Vladimir Joseph Stephan Orlovsky, Apr 03 2010 *)
  • PARI
    j=[]; for(n=0,75,j=concat(j,gcd(1+fibonacci(n+1),1+fibonacci(n) ))); j
    
  • PARI
    { g=0; f=1; for (n=0, 1000, write("b063726.txt", n, " ", gcd(1 + f, 1 + g)); h=g; g=f; f+=h ) } \\ Harry J. Smith, Aug 28 2009
    

Formula

Conjectures from Colin Barker, Jan 30 2018: (Start)
G.f.: (1 + 2*x + x^2 + x^3 - x^4 - 3*x^5 - 3*x^6 - 3*x^7 - 5*x^8 - x^9 + x^10 + 3*x^11 + 2*x^12 + x^13) / ((1 - x)*(1 + x)*(1 - x + x^2)*(1 + x + x^2)*(1 + x^2 - x^4)*(1 - x^2 - x^4)).
a(n) = 3*a(n-4) + a(n-6) - a(n-8) - 3*a(n-10) + a(n-14) for n>13.
(End)