A063746 Triangle read by rows giving number of partitions of k (k=0 .. n^2) with Ferrers plot fitting in an n X n box.
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 3, 3, 3, 2, 1, 1, 1, 1, 2, 3, 5, 5, 7, 7, 8, 7, 7, 5, 5, 3, 2, 1, 1, 1, 1, 2, 3, 5, 7, 9, 11, 14, 16, 18, 19, 20, 20, 19, 18, 16, 14, 11, 9, 7, 5, 3, 2, 1, 1, 1, 1, 2, 3, 5, 7, 11, 13, 18, 22, 28, 32, 39, 42, 48, 51, 55, 55, 58, 55, 55, 51, 48, 42, 39, 32, 28
Offset: 0
Examples
From _M. F. Hasler_, Apr 12 2012: (Start) The table reads: n=0: 1 _ (k=0) n=1: 1 1 _ (k=0..1) n=2: 1 1 2 1 1 _ (k=0..4) n=3: 1 1 2 3 3 3 3 2 1 1 _ (k=0..9) n=4: 1 1 2 3 5 5 7 7 8 7 7 5 5 3 2 1 1 _ (k=0..16) n=5: 1 1 2 3 5 7 9 11 14 16 18 19 20 20 19 18 16 ... _ (k=0..25) etc. (End) Cycle index of S(3) is (1/6)*(x(1)^3+3*x(1)*x(2)+2*x(3)), so g.f. for 3rd row is (1/6)*((1+x+x^2+x^3)^3+3*(1+x+x^2+x^3)*(1+x^2+x^4+x^6)+2*(1+x^3+x^6+x^9)) = x^9+x^8+2*x^7+3*x^6+3*x^5+3*x^4+3*x^3+2*x^2+x+1. a(3,7)=2 because the only partitions of 7 with Ferrers plot fitting into a 3 X 3 box are [3,3,1] and [3,2,2].
References
- G. E. Andrews and K. Eriksson, Integer partitions, Cambridge Univ. Press, 2004, pp. 67-69.
- D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; exercise 3.2.3.
- A. V. Yurkin, New binomial and new view on light theory, (book), 2013, 78 pages, no publisher listed.
Links
- Alois P. Heinz, Rows k = 0..31, flattened
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009, page 45.
- A. V. Yurkin, On similarity of systems of geometrical and arithmetic triangles, in Mathematics, Computing, Education Conference XIX, 2012.
- A. V. Yurkin, New view on the diffraction discovered by Grimaldi and Gaussian beams, arXiv preprint arXiv:1302.6287 [physics.optics], 2013.
Crossrefs
Programs
-
Maple
for n from 0 to 15 do QBR[n]:=sum(q^i,i=0..n-1) od: for n from 0 to 15 do QFAC[n]:=product(QBR[j],j=1..n) od: qbin:=(n,k)->QFAC[n]/QFAC[k]/QFAC[n-k]: for n from 0 to 7 do P[n]:=sort(expand(simplify(qbin(2*n,n)))) od: for n from 0 to 7 do seq(coeff(P[n],q,j),j=0..n^2) od; # yields sequence in triangular form - Emeric Deutsch, Apr 23 2007 # second Maple program: b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or k<1, 0, b(n, i-1, k)+ `if`(i>n, 0, b(n-i, i, k-1)))) end: T:= n-> seq(b(k, min(n, k), n), k=0..n^2): seq(T(n), n=0..8); # Alois P. Heinz, Apr 05 2012
-
Mathematica
Table[nn=n^2;CoefficientList[Series[Product[(1-x^(n+i))/(1-x^i),{i,1,n}],{x,0,nn}],x],{n,0,6}]//Grid (* Geoffrey Critzer, Sep 27 2013 *) Table[CoefficientList[QBinomial[2n,n,q] // FunctionExpand, q], {n,0,6}] // Flatten (* Peter Luschny, Jul 22 2016 *) b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1 || k < 1, 0, b[n, i - 1, k] + If[i > n, 0, b[n - i, i, k - 1]]]]; T[n_] := Table[b[k, Min[n, k], n], {k, 0, n^2}]; Table[T[n], {n, 0, 8}] // Flatten (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
-
PARI
T(n,k)=polcoeff(prod(i=0,n,sum(j=0,n,x^(j*i*(n^2+n+1)+j),O(x^(k*(n^2+n+1)+n+1)))),k*(n^2+n+1)+n) /* Based on a more general formula due to R. Gerbicz. M. F. Hasler, Apr 12 2012 */
Formula
Table[T[k, n, n], {n, 0, 9}, {k, 0, n^2}] with T[ ] defined as in A047993.
G.f.: Consider a function; f(n) = 1 + sum(i_1=1, n, sum(i_2=0, i_1, ..., sum(i_n=0, i_(n-1), x^(sum(j=1, n, i_j))*(1+...+x^i_n))...)) Then the GF is f(1)+x^3.f(2)+x^8.f(3)+..., where after x^3 the increase is n^2+1 from f(n). - Jon Perry, Jul 13 2004
G.f. for n-th row is obtained if we set x(i) = 1+x^i+x^(2*i)+...+x^(n*i), i=1, 2, ..., n, in the cycle index Z(S(n);x(1), x(2), ..., x(n)) of the symmetric group S(n) of degree n. - Vladeta Jovovic, Dec 17 2004
G.f. of row n: the q-binomial coefficient [2n,n]. - Emeric Deutsch, Apr 23 2007
T(n,k)=1 for k=0,1,n^2-1,n^2. For all m>n, T(m,n)=T(n,n)=A000041(n), i.e., below the diagonal the columns remain constant, because there cannot be more than n nonzero elements with sum <= n. - M. F. Hasler, Apr 12 2012
T(n,2n) = A128552(n-2). - Geoffrey Critzer, Sep 27 2013
From Alois P. Heinz, Jan 09 2025: (Start)
Sum_{k=0..n} T(n,k) = A000070(n).
Sum_{k=0..n} k * T(n,k) = A182738(n).
Sum_{k=0..n^2} k * T(n,k) = A002544(n-1) for n>=1.
Sum_{k=0..n^2} (-1)^k * T(n,k) = A126869(n). (End)
Comments