A107110
Square array by antidiagonals where T(n,k) is the number of partitions of k into no more than n parts each no more than n. Visible version of A063746.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 0, 1, 2, 1, 1, 0, 0, 1, 3, 2, 1, 1, 0, 0, 0, 3, 3, 2, 1, 1, 0, 0, 0, 3, 5, 3, 2, 1, 1, 0, 0, 0, 3, 5, 5, 3, 2, 1, 1, 0, 0, 0, 2, 7, 7, 5, 3, 2, 1, 1, 0, 0, 0, 1, 7, 9, 7, 5, 3, 2, 1, 1, 0, 0, 0, 1, 8, 11, 11, 7, 5, 3, 2, 1, 1, 0, 0, 0, 0, 7, 14, 13, 11, 7, 5, 3, 2
Offset: 0
Rows start 1,0,0,0,...; 1,1,0,0,0,...; 1,1,2,1,1,0,0,0,...; 1,1,2,3,3,3,3,2,1,1,0,0,0,...; 1,1,2,3,5,5,7,7,8,7,7,5,5,3,2,1,1,0,0,0,...; etc.
T(4,6)=7 since 6 can be written seven ways with no more than 4 parts each no more than 4: 4+2, 4+1+1, 3+3, 3+2+1, 3+1+1+1, 2+2+2, or 2+2+1+1.
A008459
Square the entries of Pascal's triangle.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 9, 9, 1, 1, 16, 36, 16, 1, 1, 25, 100, 100, 25, 1, 1, 36, 225, 400, 225, 36, 1, 1, 49, 441, 1225, 1225, 441, 49, 1, 1, 64, 784, 3136, 4900, 3136, 784, 64, 1, 1, 81, 1296, 7056, 15876, 15876, 7056, 1296, 81, 1, 1, 100, 2025, 14400, 44100, 63504, 44100, 14400, 2025, 100, 1
Offset: 0
Pascal's triangle begins
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
...
so the present triangle begins
1
1 1
1 4 1
1 9 9 1
1 16 36 16 1
1 25 100 100 25 1
1 36 225 400 225 36 1
1 49 441 1225 1225 441 49 1
...
- T. K. Petersen, Eulerian Numbers, Birkhauser, 2015, Chapter 12.
- J. Riordan, An introduction to combinatorial analysis, Dover Publications, Mineola, NY, 2002, page 191, Problem 15. MR1949650
- P. G. Tait, On the Linear Differential Equation of the Second Order, Proceedings of the Royal Society of Edinburgh, 9 (1876), 93-98 (see p. 97) [From Tom Copeland, Sep 09 2010, vol number corrected Sep 10 2010]
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Per Alexandersson, Svante Linusson, Samu Potka, and Joakim Uhlin, Refined Catalan and Narayana cyclic sieving, arXiv:2010.11157 [math.CO], 2020.
- N. Alexeev and A. Tikhomirov, Singular Values Distribution of Squares of Elliptic Random Matrices and type-B Narayana Polynomials, arXiv preprint arXiv:1501.04615 [math.PR], 2015.
- F. Ardila, M. Beck, S. Hosten, J. Pfeifle and K. Seashore, Root polytopes and growth series of root lattices, arXiv:0809.5123 [math.CO], 2008.
- Peter Bala, A commutative diagram of triangular arrays
- E. Barcucci, A. Frosini and S. Rinaldi, On directed-convex polyominoes in a rectangle, Discr. Math., 298 (2005), 62-78.
- Paul Barry and Aoife Hennessy, Generalized Narayana Polynomials, Riordan Arrays, and Lattice Paths, Journal of Integer Sequences, Vol. 15, 2012, #12.4.8.
- Carl M. Bender and Gerald V. Dunne, Polynomials and operator orderings, J. Math. Phys. 29 (1988), 1727-1731.
- Kevin Buchin, Man-Kwun Chiu, Stefan Felsner, Günter Rote, and André Schulz, The Number of Convex Polyominoes with Given Height and Width, arXiv:1903.01095 [math.CO], 2019.
- John H. Conway and N. J. A. Sloane, Low-dimensional lattices. VII Coordination sequences, Proc. R. Soc. Lond. A (1997) 453, 2369-2389.
- R. Cori and G. Hetyei, Counting genus one partitions and permutations, arXiv preprint arXiv:1306.4628 [math.CO], 2013.
- R. Cori and G. Hetyei, How to count genus one partitions, FPSAC 2014, Chicago, Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France, 2014, 333-344.
- Colin Defant, Stack-sorting preimages of permutation classes, arXiv:1809.03123 [math.CO], 2018.
- Sergey Fomin and Nathan Reading, Root systems and generalized associahedra, Lecture notes for IAS/Park-City 2004, arXiv:math/0505518 [math.CO], 2005, 2008. [From _Peter Bala_, Oct 23 2008]
- Wolfdieter Lang, On Generating functions of Diagonals Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
- Feihu Liu, Guoce Xin, and Chen Zhang, Ehrhart Polynomials of Order Polytopes: Interpreting Combinatorial Sequences on the OEIS, arXiv:2412.18744 [math.CO], 2024. See pp. 10, 13.
- Abdelkader Necer, Séries formelles et produit de Hadamard, Journal de théorie des nombres de Bordeaux, 9:2 (1997), pp. 319-335.
- Weiping Wang and Tianming Wang, Generalized Riordan array, Discrete Mathematics, Vol. 308, No. 24, 6466-6500.
- Yi Wang and Arthur L.B. Yang, Total positivity of Narayana matrices, arXiv:1702.07822 [math.CO], 2017.
- Harold R. L. Yang and Philip B. Zhang, Stable multivariate Narayana polynomials and labeled plane trees, arXiv:2403.15058 [math.CO], 2024. See p. 2.
Cf.
A007318,
A055133,
A116647,
A001263,
A086645,
A063007,
A108558,
A108625 (Hilbert transform),
A145903,
A181543,
A086645 (logarithmic derivative),
A105868 (inverse binomial transform),
A093118.
-
Flat(List([0..10],n->List([0..n],k->Binomial(n,k)^2))); # Muniru A Asiru, Mar 30 2018
-
/* As triangle */ [[Binomial(n, k)^2: k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Dec 15 2016
-
seq(seq(binomial(n, k)^2, k=0..n), n=0..10);
-
Table[Binomial[n, k]^2, {n, 0, 11}, {k, 0, n}]//Flatten (* Alonso del Arte, Dec 08 2013 *)
-
create_list(binomial(n,k)^2,n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
-
T(n,k):=if n=k then 1 else if k=0 then 1 else T(n-1,k)*(n+k)/(n-k)+T(n-1,k-1); /* Vladimir Kruchinin, Oct 18 2014 */
-
A(x,y):=1/sqrt(1-2*x-2*x*y+x^2-2*x^2*y+x^2*y^2);
taylor(x*A(x,y)+x*y*A(x,y)+sqrt(1+4*x^2*y*A(x,y)^2),x,0,7,y,0,7); /* Vladimir Kruchinin, Oct 23 2020 */
-
{T(n, k) = if( k<0 || k>n, 0, binomial(n, k)^2)}; /* Michael Somos, May 03 2004 */
-
{T(n,k)=polcoeff(polcoeff(sum(m=0,n,(2*m)!/m!^2*x^(2*m)*y^m/(1-x-x*y+x*O(x^n))^(2*m+1)),n,x),k,y)} \\ Paul D. Hanna, Oct 31 2010
-
def A008459(n): return comb(r:=(m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)),n-comb(r+1,2))**2 # Chai Wah Wu, Nov 12 2024
A083906
Table read by rows: T(n, k) is the number of length n binary words with exactly k inversions.
Original entry on oeis.org
1, 2, 3, 1, 4, 2, 2, 5, 3, 4, 3, 1, 6, 4, 6, 6, 6, 2, 2, 7, 5, 8, 9, 11, 9, 7, 4, 3, 1, 8, 6, 10, 12, 16, 16, 18, 12, 12, 8, 6, 2, 2, 9, 7, 12, 15, 21, 23, 29, 27, 26, 23, 21, 15, 13, 7, 4, 3, 1, 10, 8, 14, 18, 26, 30, 40, 42, 48, 44, 46, 40, 40, 30, 26, 18, 14, 8, 6, 2, 2
Offset: 0
When viewed as an array with A033638(r) entries per row, the table begins:
. 1 ............... : 1
. 2 ............... : 2
. 3 1 ............. : 3 + q = (1) + (1+q) + (1)
. 4 2 2 ........... : 4 + 2q + 2q^2 = 1 + (1+q+q^2) + (1+q+q^2) + 1
. 5 3 4 3 1 ....... : 5 + 3q + 4q^2 + 3q^3 + q^4
. 6 4 6 6 6 2 2
. 7 5 8 9 11 9 7 4 3 1
. 8 6 10 12 16 16 18 12 12 8 6 2 2
. 9 7 12 15 21 23 29 27 26 23 21 15 13 7 4 3 1
...
The second but last row is from the sum over 7 q-polynomials coefficients:
. 1 ....... : 1 = [6,0]_q
. 1 1 1 1 1 1 ....... : 1+q+q^2+q^3+q^4+q^5 = [6,1]_q
. 1 1 2 2 3 2 2 1 1 ....... : 1+q+2q^2+2q^3+3q^4+2q^5+2q^6+q^7+q^8 = [6,2]_q
. 1 1 2 3 3 3 3 2 1 1 ....... : 1+q+2q^2+3q^3+3q^4+3q^5+3q^6+2q^7+q^8+q^9 = [6,3]_q
. 1 1 2 2 3 2 2 1 1 ....... : 1+q+2q^2+2q^3+3q^4+2q^5+2q^6+q^7+q^8 = [6,4]_q
. 1 1 1 1 1 1 ....... : 1+q+q^2+q^3+q^4+q^5 = [6,5]_q
. 1 ....... : 1 = [6,6]_q
- George E. Andrews, 'Theory of Partitions', 1976, page 242.
- Seiichi Manyama, Rows n = 0..48, flattened
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- Alexander Gruber, "The Egg:" Bizarre behavior of the roots of a family of polynomials Mathematics StackExchange Oct 04 2012
- MathOverflow, Partition numbers and Gaussian binomial coefficient
- Eric Weisstein, q-Binomial Coefficient, Mathworld.
- Wikipedia, q-binomial
- Index entries for sequences related to binary linear codes
Cf.
A000025,
A000034,
A000041,
A016116,
A029552,
A033638,
A060546,
A063746,
A077028,
A083479,
A083480,
A098613,
A260460.
-
R:=PowerSeriesRing(Rationals(), 100);
qBinom:= func< n,k,x | n eq 0 or k eq 0 select 1 else (&*[(1-x^(n-j))/(1-x^(j+1)): j in [0..k-1]]) >;
A083906:= func< n,k | Coefficient(R!((&+[qBinom(n,k,x): k in [0..n]]) ), k) >;
[A083906(n,k): k in [0..Floor(n^2/4)], n in [0..12]]; // G. C. Greubel, Feb 13 2024
-
QBinomial := proc(n,m,q) local i ; factor( mul((1-q^(n-i))/(1-q^(i+1)),i=0..m-1) ) ; expand(%) ; end:
A083906 := proc(n,k) add( QBinomial(n,m,q),m=0..n ) ; coeftayl(%,q=0,k) ; end:
for n from 0 to 10 do for k from 0 to A033638(n)-1 do printf("%d,",A083906(n,k)) ; od: od: # R. J. Mathar, May 28 2009
T := proc(n, k) if n < 0 or k < 0 or k > floor(n^2/4) then return 0 fi;
if n < 2 then return n + 1 fi; 2*T(n-1, k) - T(n-2, k) + T(n-2, k - n + 1) end:
seq(print(seq(T(n, k), k = 0..floor((n/2)^2))), n = 0..8); # Peter Luschny, Feb 16 2024
-
Table[CoefficientList[Total[Table[FunctionExpand[QBinomial[n, k, q]], {k, 0, n}]],q], {n, 0, 10}] // Grid (* Geoffrey Critzer, May 14 2017 *)
-
{T(n, k) = polcoeff(sum(m=0, n, prod(k=0, m-1, (x^n - x^k) / (x^m - x^k))), k)}; /* Michael Somos, Jun 25 2017 */
-
def T(n,k): # T = A083906
if k<0 or k> (n^2//4): return 0
elif n<2 : return n+1
else: return 2*T(n-1, k) - T(n-2, k) + T(n-2, k-n+1)
flatten([[T(n,k) for k in range(int(n^2//4)+1)] for n in range(13)]) # G. C. Greubel, Feb 13 2024
A063075
Number of partitions of 2n^2 whose Ferrers-plot fits within a 2n X 2n box and cover an n X n box; number of ways to cut a 2n X 2n chessboard into two equal-area pieces along a non-descending line from lower left to upper right and passing through the center.
Original entry on oeis.org
1, 2, 8, 48, 390, 3656, 37834, 417540, 4836452, 58130756, 719541996, 9121965276, 117959864244, 1551101290792, 20689450250926, 279395018584860, 3813887739881184, 52557835511244660, 730403326965323706
Offset: 0
For a 6 X 6 board (n=3) the partition (6,6,2,2,2,0) represents a Ferrers plot that does not pass through the center of a 6*6 box.
From _Paul D. Hanna_, Dec 12 2006: (Start)
Central q-binomial coefficients begin:
1;
1 + q;
1 + q + 2*q^2 + q^3 + q^4;
1 + q + 2*q^2 + 3*q^3 + 3*q^4 + 3*q^5 + 3*q^6 + 2*q^7 + q^8 + q^9;
the coefficients of q in these polynomials form the rows of triangle A063746.
The sums of squared terms in rows of A063746 equal this sequence. (End)
-
Table[(#.#)&@Table[T[k, n, n], {k, 0, n^2}], {n, 0, 24}] (* with T[m, a, b] as defined in A047993 *)
-
a(n)=polcoef((prod(j=1,n,(1-q^(n+j))/(1-q^j)))^2,n^2,q) \\ Tani Akinari, Jan 28 2022
A274888
Triangle read by rows: the q-analog of the swinging factorial which is defined as q-multinomial([floor(n/2), n mod 2, floor(n/2)]).
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 4, 5, 6, 5, 4, 2, 1, 1, 1, 2, 3, 3, 3, 3, 2, 1, 1, 1, 2, 4, 7, 10, 13, 16, 17, 17, 16, 13, 10, 7, 4, 2, 1, 1, 1, 2, 3, 5, 5, 7, 7, 8, 7, 7, 5, 5, 3, 2, 1, 1, 1, 2, 4, 7, 12, 17, 24, 31, 39, 45, 51, 54, 56, 54, 51, 45, 39, 31, 24, 17, 12, 7, 4, 2, 1
Offset: 0
The polynomials start:
[0] 1
[1] 1
[2] q + 1
[3] (q + 1) * (q^2 + q + 1)
[4] (q^2 + 1) * (q^2 + q + 1)
[5] (q^2 + 1) * (q^2 + q + 1) * (q^4 + q^3 + q^2 + q + 1)
[6] (q + 1) * (q^2 - q + 1) * (q^2 + 1) * (q^4 + q^3 + q^2 + q + 1)
The coefficients of the polynomials start:
[n] [k=0,1,2,...] [row sum]
[0] [1] [1]
[1] [1] [1]
[2] [1, 1] [2]
[3] [1, 2, 2, 1] [6]
[4] [1, 1, 2, 1, 1] [6]
[5] [1, 2, 4, 5, 6, 5, 4, 2, 1] [30]
[6] [1, 1, 2, 3, 3, 3, 3, 2, 1, 1] [20]
[7] [1, 2, 4, 7, 10, 13, 16, 17, 17, 16, 13, 10, 7, 4, 2, 1] [140]
[8] [1, 1, 2, 3, 5, 5, 7, 7, 8, 7, 7, 5, 5, 3, 2, 1, 1] [70]
T(5, 4) = 6 because the 2 orbitals [-1,-1,1,1,0] and [-1,0,1,1,-1] have at position 4 and the 4 orbitals [0,-1,1,-1,1], [1,-1,0,-1,1], [1,-1,1,-1,0] and [1,0,1,-1,-1] at positions 1 and 3 a down step.
-
QSwingFactorial_coeffs := proc(n) local P,a,b;
a := mul((p^(n-i)-1)/(p^(i+1)-1),i=0..iquo(n,2)-1);
b := ((p^(iquo(n,2)+1)-1)/(p-1))^((1-(-1)^n)/2);
P := simplify(a*b); seq(coeff(P,p,j),j=0..degree(P)) end:
for n from 0 to 9 do print(QSwingFactorial_coeffs(n)) od;
# Alternatively (recursive):
with(QDifferenceEquations):
QSwingRec := proc(n,q) local r; if n = 0 then return 1 fi:
if irem(n,2) = 0 then r := (1+q^(n/2))/QBrackets(n/2,q)
else r := QBrackets(n,q) fi; r*QSwingRec(n-1,q) end:
Trow := proc(n) expand(QSimplify(QSwingRec(n,q)));
seq(coeff(%,q,j),j=0..degree(%)) end: seq(Trow(n),n=0..10);
-
p[n_] := QFactorial[n, q] / QFactorial[Quotient[n, 2], q]^2
Table[CoefficientList[p[n] // FunctionExpand, q], {n,0,9}] // Flatten
-
from sage.combinat.q_analogues import q_factorial
def q_swing_factorial(n, q=None):
return q_factorial(n)//q_factorial(n//2)^2
for n in (0..8): print(q_swing_factorial(n).list())
-
# uses[unit_orbitals from A274709]
# Brute force counting
def orbital_major_index(n):
S = [0]*(((n+1)//2)^2 + ((n+1) % 2))
for u in unit_orbitals(n):
L = [i+1 if u[i+1] < u[i] else 0 for i in (0..n-2)]
# i+1 because u is 0-based whereas convention assumes 1-base.
S[sum(L)] += 1
return S
for n in (0..9): print(orbital_major_index(n))
A136621
Transpose T(n,k) of Parker's partition triangle A047812 (n >= 1 and 0 <= k <= n-1).
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 7, 5, 1, 1, 11, 20, 9, 1, 1, 18, 51, 48, 13, 1, 1, 26, 112, 169, 100, 20, 1, 1, 38, 221, 486, 461, 194, 28, 1, 1, 52, 411, 1210, 1667, 1128, 352, 40, 1, 1, 73, 720, 2761, 5095, 4959, 2517, 615, 54, 1, 1, 97, 1221, 5850, 13894, 18084, 13241, 5288, 1034, 75, 1
Offset: 1
Row four of A047812 is 1 5 7 1, so row four of the present entry is 1 7 5 1.
From _Petros Hadjicostas_, May 30 2020: (Start)
Triangle T(n,k) (with rows n >= 1 and columns k = 0..n-1) begins:
1;
1, 1;
1, 3, 1;
1, 7, 5, 1;
1, 11, 20, 9, 1;
1, 18, 51, 48, 13, 1;
1, 26, 112, 169, 100, 20, 1;
1, 38, 221, 486, 461, 194, 28, 1;
1, 52, 411, 1210, 1667, 1128, 352, 40, 1;
... (End)
-
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i
b((n-k-1)*(n+1), n$2):
seq(seq(T(n, k), k=0..n-1), n=1..12); # Alois P. Heinz, May 30 2020
-
T[n_, k_]:= SeriesCoefficient[QBinomial[2*n, n, q], {q, 0, k*(n+1)}];
Table[T[n, n-k], {n,12}, {k,n}]//Flatten (* G. C. Greubel, May 31 2020 *)
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[n < 0 || t i < n, 0, b[n, i - 1, t] + b[n - i, Min[i, n - i], t - 1]]];
T[n_, k_] := b[(n-k-1)(n+1), n, n];
Table[T[n, k], {n, 1, 12}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
-
T(n, k) = #partitions(k*(n+1), n, n);
for (n=1, 10, for (k=0, n-1, print1(T(n, n-1-k), ", "); ); print(); ); \\ Petros Hadjicostas, May 30 2020
/* Second program, courtesy of G. C. Greubel */
T(n,k) = polcoeff(prod(j=0, n-1, (1-q^(2*n-j))/(1-q^(j+1)) ), k*(n+1) );
vector(12, n, vector(n, k, T(n,n-k))) \\ Petros Hadjicostas, May 31 2020
-
def T(n,k):
P. = PowerSeriesRing(ZZ, k*(n+1)+1)
return P( q_binomial(2*n, n, x) ).list()[k*(n+1)]
[[ T(n,n-k) for k in (1..n)] for n in (1..12)] # G. C. Greubel, May 31 2020
A102422
Number of partitions of n with k <= 5 parts and each part p <= 5.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 9, 11, 14, 16, 18, 19, 20, 20, 19, 18, 16, 14, 11, 9, 7, 5, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
a(7)=11 because we can write 7=1+2+2+2 or 5+2 or 1+2+4 or 3+4 or 1+3+3 or 1+1+1+1+3 or 1+1+2+3 or 2+2+3 or 1+1+1+2+2 1+1+1+4 or 1+1+5.
A total of 8 comes from 1+1+1+1+4, 1+1+1+2+3, 1+1+2+2+2 and a(3) = 3 [8 = 3+5] [From _Toby Gottfried_, Feb 19 2009]
A063260 gives the number of permuted rolls of each possible total for any number of dice. (End)
A274887
Triangle read by rows: coefficients of the q-factorial.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 6, 5, 3, 1, 1, 4, 9, 15, 20, 22, 20, 15, 9, 4, 1, 1, 5, 14, 29, 49, 71, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1, 1, 6, 20, 49, 98, 169, 259, 359, 455, 531, 573, 573, 531, 455, 359, 259, 169, 98, 49, 20, 6, 1
Offset: 0
The polynomials start:
[0] 1
[1] 1
[2] q + 1
[3] (q + 1) * (q^2 + q + 1)
[4] (q + 1)^2 * (q^2 + 1) * (q^2 + q + 1)
[5] (q + 1)^2 * (q^2 + 1) * (q^2 + q + 1) * (q^4 + q^3 + q^2 + q + 1)
The triangle starts:
[1]
[1]
[1, 1]
[1, 2, 2, 1]
[1, 3, 5, 6, 5, 3, 1]
[1, 4, 9, 15, 20, 22, 20, 15, 9, 4, 1]
[1, 5, 14, 29, 49, 71, 90, 101, 101, 90, 71, 49, 29, 14, 5, 1]
-
B:= func< n,x | n eq 0 select 1 else (&*[1-x^j: j in [1..n]])/(1-x)^n >;
R:=PowerSeriesRing(Integers(), 30);
[Coefficients(R!( B(n,x) )): n in [0..9]]; // G. C. Greubel, May 22 2019
-
Table[CoefficientList[QFactorial[n,q]//FunctionExpand, q], {n,0,9} ]//Flatten
-
for(n=0, 8, print1(Vec(if(n==0, 1, prod(j=1, n, 1-x^j)/(1-x)^n)), ", "); print(); ) \\ G. C. Greubel, May 23 2019
-
from sage.combinat.q_analogues import q_factorial
for n in (0..5): print(q_factorial(n).list())
A138774
Triangle read by rows: T(n,k) is the number of partitions of k that fit into a 2n by n box (n>=0; 0<=k<=2n^2).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 1, 1, 1, 1, 2, 3, 4, 5, 7, 7, 8, 8, 8, 7, 7, 5, 4, 3, 2, 1, 1, 1, 1, 2, 3, 5, 6, 9, 11, 15, 17, 21, 23, 27, 28, 31, 31, 33, 31, 31, 28, 27, 23, 21, 17, 15, 11, 9, 6, 5, 3, 2, 1, 1, 1, 1, 2, 3, 5, 7, 10, 13, 18, 23, 30, 36, 45, 53, 63, 72, 83, 92, 103, 111, 121
Offset: 0
T(2,4)=3 because we have 4, 31 and 22.
T(3,13)=5 because we have 661,652,643,553 and 544.
Triangle starts:
1;
1,1,1;
1,1,2,2,3,2,2,1,1;
1,1,2,3,4,5,7,7,8,8,8,7,7,5,4,3,2,1,1;
- G. E. Andrews and K. Eriksson, Integer partitions, Cambridge Univ. Press, 2004, pp. 67-69.
-
br:=proc(n) options operator, arrow: sum(q^i,i=0..n-1) end proc: f:= proc(n) options operator, arrow: mul(br(j),j=1..n) end proc: cbr:=proc(n,k) options operator, arrow: simplify(f(n)/(f(k)*f(n-k))) end proc: for n from 0 to 5 do P[n]:=sort(expand(cbr(3*n,n))) end do: for n from 0 to 5 do seq(coeff(P[n],q, j),j=0..2*n^2) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n, i, k) option remember;
`if`(n=0, 1, `if`(i<1 or k<1, 0, b(n, i-1, k)+
`if`(i>n, 0, b(n-i, i, k-1))))
end:
T:= n-> seq(b(k, min(n, k), 2*n), k=0..2*n^2):
seq(T(n), n=0..6); # Alois P. Heinz, Apr 05 2012
-
b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i<1 || k<1, 0, b[n, i-1, k] + If[i>n, 0, b[n-i, i, k-1]]]]; T[n_] := Table[b[k, Min[n, k], 2*n], {k, 0, 2 n^2}]; Table[T[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, May 26 2015, after Alois P. Heinz *)
-
T138774(n,k)=polcoeff(prod(i=0,2*n,sum(j=0,n,x^(j*(i*(2*n^2+n+1)+1)),O(x^(k*(2*n^2+n+1)+n+1)))),k*(2*n^2+n+1)+n) /* replacing the inner sum by the expression for the geometric series seems less efficient */
for(n=0,5,for(k=0,2*n^2,print1(T138774(n,k)","))) \\ M. F. Hasler, Apr 15 2012
A260894
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (1 - x^(n+k))/(1 - x^k).
Original entry on oeis.org
1, 1, 2, 2, 4, 5, 8, 10, 15, 20, 28, 36, 50, 64, 86, 110, 145, 184, 238, 300, 384, 481, 608, 756, 948, 1172, 1456, 1790, 2208, 2700, 3310, 4026, 4906, 5941, 7200, 8680, 10470, 12570, 15092, 18050, 21583, 25718, 30634, 36376, 43174, 51102, 60446, 71324, 84102, 98948
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 5*x^5 + 8*x^6 + 10*x^7 +...
where
A(x) = 1 + x*(1-x^2)/(1-x) + x^2*(1-x^3)*(1-x^4)/((1-x)*(1-x^2)) + x^3*(1-x^4)*(1-x^5)*(1-x^6)/((1-x)*(1-x^2)*(1-x^3)) + x^4*(1-x^5)*(1-x^6)*(1-x^7)*(1-x^8)/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) +...
-
Table[SeriesCoefficient[Sum[x^k * Product[(1-x^(k+j))/(1-x^j), {j,1,k}], {k,0,n}], {x,0,n}], {n,0,50}] (* Vaclav Kotesovec, Aug 08 2015 *)
-
{a(n) = local(A=1); A = sum(m=0,n,x^m*prod(k=1,m,(1-x^(m+k))/(1-x^k +x*O(x^n)))); polcoeff(A,n)}
for(n=0,60,print1(a(n),", "))
Showing 1-10 of 11 results.
Comments