cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A047812 Parker's partition triangle T(n,k) read by rows (n >= 1 and 0 <= k <= n-1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 7, 1, 1, 9, 20, 11, 1, 1, 13, 48, 51, 18, 1, 1, 20, 100, 169, 112, 26, 1, 1, 28, 194, 461, 486, 221, 38, 1, 1, 40, 352, 1128, 1667, 1210, 411, 52, 1, 1, 54, 615, 2517, 4959, 5095, 2761, 720, 73, 1, 1, 75, 1034, 5288, 13241, 18084, 13894, 5850, 1221, 97, 1
Offset: 1

Views

Author

Keywords

Comments

The entries in row n are the coefficients of q^(k*(n+1)) in the q-binomial coefficient [2n, n], where k runs from 0 to n-1. - James Sellers
T(n,k) is the number of partitions of k*(n+1) into at most n parts each no bigger than n (see the links). - Petros Hadjicostas, May 30 2020
Named after the American mathematician Ernest Tilden Parker (1926-1991). - Amiram Eldar, Jun 20 2021

Examples

			Triangle T(n,k) (with rows n >= 1 and columns k = 0..n-1) starts:
  1;
  1,  1;
  1,  3,  1;
  1,  5,  7   1;
  1,  9, 20, 11,  1;
  1, 13, 48, 51, 18, 1;
  ...
		

Crossrefs

Cf. A000108 (row sums), A136621 (mirror image).

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i
           b(k*(n+1), n$2):
    seq(seq(T(n, k), k=0..n-1), n=1..12);  # Alois P. Heinz, May 30 2020
  • Mathematica
    s[n_] := s[n] = Series[Product[(1-q^(2n-k)) / (1-q^(k+1)), {k, 0, n-1}], {q, 0, n^2}];
    t[n_, k_] := SeriesCoefficient[s[n], k(n+1)];
    Flatten[Table[t[n, k], {n, 1, 12}, {k, 0, n-1}]] (* Jean-François Alcover, Jan 27 2012 *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[n < 0 || t i < n, 0, b[n, i - 1, t] + b[n - i, Min[i, n - i], t - 1]]];
    T[n_, k_] := b[k(n+1), n, n];
    Table[T[n, k], {n, 1, 12}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
  • PARI
    T(n,k) = #partitions(k*(n+1), n,n);
    for (n=1, 10, for (k=0, n-1, print1(T(n,k), ", "); ); print(); ); \\ Petros Hadjicostas, May 30 2020
    /* Second program, courtesy of G. C. Greubel */
    T(n,k) = polcoeff(prod(j=0, n-1, (1-q^(2*n-j))/(1-q^(j+1)) ), k*(n+1) );
    vector(12, n, vector(n, k, T(n,k-1))); \\ Petros Hadjicostas, May 31 2020

Extensions

More terms from James Sellers
Offset corrected by Alois P. Heinz, May 30 2020

A051643 Central elements in Parker's partition triangle.

Original entry on oeis.org

1, 3, 20, 169, 1667, 18084, 208960, 2527074, 31630390, 406680465, 5342750699, 71442850111, 969548468960, 13323571588607, 185072895183632, 2594890728951909, 36681505784903758, 522291180086851188, 7484621370716999785, 107876522368295972285, 1562916545414144667559
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i
           b(2*n*(n+1), 2*n+1$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, May 30 2020
  • Mathematica
    a[n_] := SeriesCoefficient[QBinomial[2(2n+1), 2n+1, q], {q, 0, 2n(n+1)}];
    Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Aug 19 2019 *)

Formula

a(n) = coefficient of q^((m^2-1)/2) = q(2*n*(n+1)) in the q-binomial coefficient [2*m, m] = [2*(2*n+1), 2*n+1], where m = 2*n+1. [Corrected by Petros Hadjicostas, May 30 2020]
a(n) is the number of partitions of 2*n*(n+1) into at most 2*n+1 parts each no bigger than 2*n+1. - Petros Hadjicostas, May 30 2020

Extensions

a(18)-a(20) from Alois P. Heinz, May 30 2020

A136622 Partial sums of the irregular table A136624.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 3, 5, 2, 1, 1, 3, 8, 4, 2, 1, 1, 3, 9, 10, 4, 2, 1, 1, 3, 9, 17, 8, 4, 2, 1, 1, 3, 9, 23, 16, 8, 4, 2, 1, 1, 3, 9, 27, 28, 14, 8, 4, 2, 1, 1, 3, 9, 28, 43, 26, 14, 8, 4, 2, 1, 1, 3, 9, 28, 60, 41, 24, 14, 8, 4, 2
Offset: 1

Views

Author

Alford Arnold, Jan 29 2008

Keywords

Comments

A129176 can also be viewed as partial sums, but are perpendicular to the sequences of A136622.

Examples

			A136624 begins
  1
  ...1
  ......2...1
  ..........2...3...3...1
  ..............2...2...6...7
  ..................2...2...4
  ......................2...2
  ..........................2
therefore this sequence begins
  1...1...1...1...1...1...1...1
  ....1...1...1...1...1...1...1
  ........2...3...3...3...3...3
  ............2...5...8...9...9
  ................2...4..10..17
  ....................2...4...8
  ........................2...4
  ............................2
		

Crossrefs

Showing 1-3 of 3 results.