cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063759 Spherical growth series for modular group.

Original entry on oeis.org

1, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152
Offset: 0

Views

Author

N. J. A. Sloane, Aug 14 2001

Keywords

Comments

Also number of sequences S of length n with entries in {1,..,q} where q = 3, satisfying the condition that adjacent terms differ in absolute value by exactly 1, see examples. - W. Edwin Clark, Oct 17 2008

Examples

			For n = 2 the a(2) = 4 sequences are (1,2),(2,1),(2,3),(3,2). - _W. Edwin Clark_, Oct 17 2008
From _Joerg Arndt_, Nov 23 2012: (Start)
There are a(6) = 16 such words of length 6:
[ 1]   [ 1 2 1 2 1 2 ]
[ 2]   [ 1 2 1 2 3 2 ]
[ 3]   [ 1 2 3 2 1 2 ]
[ 4]   [ 1 2 3 2 3 2 ]
[ 5]   [ 2 1 2 1 2 1 ]
[ 6]   [ 2 1 2 1 2 3 ]
[ 7]   [ 2 1 2 3 2 1 ]
[ 8]   [ 2 1 2 3 2 3 ]
[ 9]   [ 2 3 2 1 2 1 ]
[10]   [ 2 3 2 1 2 3 ]
[11]   [ 2 3 2 3 2 1 ]
[12]   [ 2 3 2 3 2 3 ]
[13]   [ 3 2 1 2 1 2 ]
[14]   [ 3 2 1 2 3 2 ]
[15]   [ 3 2 3 2 1 2 ]
[16]   [ 3 2 3 2 3 2 ]
(End)
		

References

  • P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 156.

Crossrefs

The sequence (ternary strings) seems to be related to A029744 and A090989.

Programs

  • Haskell
    import Data.List (transpose)
    a063759 n = a063759_list !! n
    a063759_list = concat $ transpose [a151821_list, a007283_list]
    -- Reinhard Zumkeller, Dec 16 2013
    
  • Mathematica
    CoefficientList[Series[(1+3*x+2*x^2)/(1-2*x^2),{x,0,40}],x](* Jean-François Alcover, Mar 21 2011 *)
    Join[{1},Transpose[NestList[{Last[#],2First[#]}&,{3,4},40]][[1]]] (* Harvey P. Dale, Oct 22 2011 *)
  • PARI
    a(n)=([0,1; 2,0]^n*[1;3])[1,1] \\ Charles R Greathouse IV, Feb 09 2017

Formula

G.f.: (1+3*x+2*x^2)/(1-2*x^2).
a(n) = 2*a(n-2), n>2. - Harvey P. Dale, Oct 22 2011
a(2*n) = A151821(n+1); a(2*n+1) = A007283(n). - Reinhard Zumkeller, Dec 16 2013

Extensions

Information from A145751 included by Joerg Arndt, Dec 03 2012