A063759 Spherical growth series for modular group.
1, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096, 6144, 8192, 12288, 16384, 24576, 32768, 49152, 65536, 98304, 131072, 196608, 262144, 393216, 524288, 786432, 1048576, 1572864, 2097152
Offset: 0
Examples
For n = 2 the a(2) = 4 sequences are (1,2),(2,1),(2,3),(3,2). - _W. Edwin Clark_, Oct 17 2008 From _Joerg Arndt_, Nov 23 2012: (Start) There are a(6) = 16 such words of length 6: [ 1] [ 1 2 1 2 1 2 ] [ 2] [ 1 2 1 2 3 2 ] [ 3] [ 1 2 3 2 1 2 ] [ 4] [ 1 2 3 2 3 2 ] [ 5] [ 2 1 2 1 2 1 ] [ 6] [ 2 1 2 1 2 3 ] [ 7] [ 2 1 2 3 2 1 ] [ 8] [ 2 1 2 3 2 3 ] [ 9] [ 2 3 2 1 2 1 ] [10] [ 2 3 2 1 2 3 ] [11] [ 2 3 2 3 2 1 ] [12] [ 2 3 2 3 2 3 ] [13] [ 3 2 1 2 1 2 ] [14] [ 3 2 1 2 3 2 ] [15] [ 3 2 3 2 1 2 ] [16] [ 3 2 3 2 3 2 ] (End)
References
- P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 156.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Index entries for sequences related to modular groups
- Index entries for linear recurrences with constant coefficients, signature (0,2)
Crossrefs
Programs
-
Haskell
import Data.List (transpose) a063759 n = a063759_list !! n a063759_list = concat $ transpose [a151821_list, a007283_list] -- Reinhard Zumkeller, Dec 16 2013
-
Mathematica
CoefficientList[Series[(1+3*x+2*x^2)/(1-2*x^2),{x,0,40}],x](* Jean-François Alcover, Mar 21 2011 *) Join[{1},Transpose[NestList[{Last[#],2First[#]}&,{3,4},40]][[1]]] (* Harvey P. Dale, Oct 22 2011 *)
-
PARI
a(n)=([0,1; 2,0]^n*[1;3])[1,1] \\ Charles R Greathouse IV, Feb 09 2017
Formula
G.f.: (1+3*x+2*x^2)/(1-2*x^2).
a(n) = 2*a(n-2), n>2. - Harvey P. Dale, Oct 22 2011
Extensions
Information from A145751 included by Joerg Arndt, Dec 03 2012
Comments