cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063775 Number of 4th powers dividing n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Henry Bottomley, Aug 16 2001

Keywords

Examples

			a(79) = 1 since 79 is divisible by 1 = 1^4.
a(80) = 2 since 80 is divisible by 1 and 16 = 2^4.
a(81) = 2 since 81 is divisible by 1 and 81 = 3^4.
		

Crossrefs

Cf. A046951 (number of squares), A061704 (number of cubes).

Programs

  • Maple
    seq(coeff(series(add(x^(k^4)/(1-x^(k^4)),k=1..n),x,n+1), x, n), n = 1 .. 120); # Muniru A Asiru, Dec 29 2018
  • Mathematica
    nn = 100;f[list_, i_] := list[[i]];
    Table[DirichletConvolve[f[Boole[Map[IntegerQ[#] &, Map[#^(1/4) &,Range[nn]]]], n],f[Table[1, {nn}], n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Feb 07 2015 *)
    f[p_, e_] := 1 + Floor[e/4]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 15 2020 *)
  • PARI
    { for (n=1, 2000, k=2; a=1; while ((p=k^4) <= n, if (n%p == 0, a++); k++); write("b063775.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 30 2009

Formula

a(n) = A000005(A053164(n)) = A046951(A000188(n)).
Multiplicative with a(p^e) = 1 + floor(e/4).
Dirichlet g.f.: zeta^2(4s)*Product_{primes p} (1 + p^(-s) + p^(-2s) + p^(-3s)). - R. J. Mathar, Jan 11 2012
G.f.: Sum_{k>=1} x^(k^4)/(1 - x^(k^4)). - Ilya Gutkovskiy, Mar 21 2017
Dirichlet g.f.: zeta(s) * zeta(4s). - Álvar Ibeas, Dec 29 2018
Sum_{k=1..n} a(k) ~ Pi^4 * n / 90 + Zeta(1/4) * n^(1/4). - Vaclav Kotesovec, Feb 03 2019