A063775 Number of 4th powers dividing n.
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1
Examples
a(79) = 1 since 79 is divisible by 1 = 1^4. a(80) = 2 since 80 is divisible by 1 and 16 = 2^4. a(81) = 2 since 81 is divisible by 1 and 81 = 3^4.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..2000 from Harry J. Smith)
Crossrefs
Programs
-
Maple
seq(coeff(series(add(x^(k^4)/(1-x^(k^4)),k=1..n),x,n+1), x, n), n = 1 .. 120); # Muniru A Asiru, Dec 29 2018
-
Mathematica
nn = 100;f[list_, i_] := list[[i]]; Table[DirichletConvolve[f[Boole[Map[IntegerQ[#] &, Map[#^(1/4) &,Range[nn]]]], n],f[Table[1, {nn}], n], n, m], {m, 1, nn}] (* Geoffrey Critzer, Feb 07 2015 *) f[p_, e_] := 1 + Floor[e/4]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Sep 15 2020 *)
-
PARI
{ for (n=1, 2000, k=2; a=1; while ((p=k^4) <= n, if (n%p == 0, a++); k++); write("b063775.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 30 2009
Formula
Multiplicative with a(p^e) = 1 + floor(e/4).
Dirichlet g.f.: zeta^2(4s)*Product_{primes p} (1 + p^(-s) + p^(-2s) + p^(-3s)). - R. J. Mathar, Jan 11 2012
G.f.: Sum_{k>=1} x^(k^4)/(1 - x^(k^4)). - Ilya Gutkovskiy, Mar 21 2017
Dirichlet g.f.: zeta(s) * zeta(4s). - Álvar Ibeas, Dec 29 2018
Sum_{k=1..n} a(k) ~ Pi^4 * n / 90 + Zeta(1/4) * n^(1/4). - Vaclav Kotesovec, Feb 03 2019