A063787 a(2^k) = k + 1 and a(2^k + i) = 1 + a(i) for k >= 0 and 0 < i < 2^k.
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6, 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7, 3, 4, 4, 5, 4, 5, 5, 6, 4
Offset: 1
Keywords
Examples
k = 3: a(2^3) = a(8) = 4 = 3 + 1. k = 3, i = 5: a(2^3 + 5) = a(13) = 3 = 1 + 2 = 1 + a(5). From _Omar E. Pol_, Jun 12 2009: (Start) Triangle begins: 1; 2,2; 3,2,3,3; 4,2,3,3,4,3,4,4; 5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5; 6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6; 7,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,3,4,4,5,... (End)
Links
- Michael Gilleland, Some Self-Similar Integer Sequences
Programs
-
Mathematica
Table[DigitCount[2 n - 1, 2, 1], {n, 1, 105}] (* Friedjof Tellkamp, Jan 11 2024 *)
-
PARI
a(n) = hammingweight(n-1) + 1; \\ Michel Marcus, Nov 23 2022
-
Python
def a(n): return bin(n-1).count('1') + 1 print([a(n) for n in range(1, 106)]) # Michael S. Branicky, Dec 16 2021
Formula
a(n) = A000120(n-1) + 1.
a(n) = log(A131136)/log(2). - Stephen Crowley, Aug 25 2008
a(n) = A000120(2n-1). - Friedjof Tellkamp, Jan 11 2024
Comments