A063834 Twice partitioned numbers: the number of ways a number can be partitioned into not necessarily different parts and each part is again so partitioned.
1, 1, 3, 6, 15, 28, 66, 122, 266, 503, 1027, 1913, 3874, 7099, 13799, 25501, 48508, 88295, 165942, 299649, 554545, 997281, 1817984, 3245430, 5875438, 10410768, 18635587, 32885735, 58399350, 102381103, 180634057, 314957425, 551857780, 958031826, 1667918758
Offset: 0
Examples
G.f. = 1 + x + 3*x^2 + 6*x^3 + 15*x^4 + 28*x^5 + 66*x^6 + 122*x^7 + 266*x^8 + ... If n=6, a possible first partitioning is (3+3), resulting in the following second partitionings: ((3),(3)), ((3),(2+1)), ((3),(1+1+1)), ((2+1),(3)), ((2+1),(2+1)), ((2+1),(1+1+1)), ((1+1+1),(3)), ((1+1+1),(2+1)), ((1+1+1),(1+1+1)).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..5000 (terms n=1..500 from T. D. Noe)
- Vaclav Kotesovec, Screenshot - A closed form formula for the constant c
- Gus Wiseman, Comcategories and Multiorders
- Gus Wiseman, Sequences enumerating triangles of integer partitions
- Gus Wiseman, On the Categorical Structure of Weakly Ordered Sequences of Integer Partitions
Crossrefs
Programs
-
Maple
with(combinat): b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, b(n, i-1)+`if`(i>n, 0, numbpart(i)*b(n-i, i))) end: a:= n-> b(n$2): seq(a(n), n=0..50); # Alois P. Heinz, Nov 26 2015
-
Mathematica
Table[Plus @@ Apply[Times, IntegerPartitions[i] /. i_Integer :> PartitionsP[i], 2], {i, 36}] (* second program: *) b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[i > n, 0, PartitionsP[i]*b[n-i, i]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 20 2016, after Alois P. Heinz *)
-
PARI
{a(n) = if( n<0, 0, polcoeff( 1 / prod(k=1, n, 1 - numbpart(k) * x^k, 1 + x * O(x^n)), n))}; /* Michael Somos, Dec 19 2016 */
Formula
G.f.: 1/Product_{k>0} (1-A000041(k)*x^k). n*a(n) = Sum_{k=1..n} b(k)*a(n-k), a(0) = 1, where b(k) = Sum_{d|k} d*A000041(d)^(k/d) = 1, 5, 10, 29, 36, 110, 106, ... . - Vladeta Jovovic, Jun 19 2003
From Vaclav Kotesovec, Mar 27 2016: (Start)
a(n) ~ c * 5^(n/4), where
c = 96146522937.7161898848278970039269600938032826... if n mod 4 = 0
c = 96146521894.9433858914667933636782092683849082... if n mod 4 = 1
c = 96146522937.2138934755566928890704687838407524... if n mod 4 = 2
c = 96146521894.8218716328341714149619262713426755... if n mod 4 = 3
(End)
Extensions
a(0)=1 prepended by Alois P. Heinz, Nov 26 2015
Comments