A063842 Number of colorings of K_4 using at most n colors.
1, 11, 66, 276, 900, 2451, 5831, 12496, 24651, 45475, 79376, 132276, 211926, 328251, 493725, 723776, 1037221, 1456731, 2009326, 2726900, 3646776, 4812291, 6273411, 8087376, 10319375, 13043251, 16342236, 20309716, 25050026, 30679275, 37326201, 45133056
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Vladeta Jovovic, Formulae for the number T(n,k) of n-multigraphs on k nodes
- Marko R. Riedel, Counting multigraphs up to isomorphism
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
Magma
[1/24*(n^6+6*n^5+24*n^4+56*n^3+83*n^2+70*n+24): n in [0..35]]; // Vincenzo Librandi, Jul 21 2013
-
Mathematica
Needs["Combinatorica`"] Table[Total[Table[CycleIndex[KSubsetGroup[GraphData[{4,k},"Automorphisms"],GraphData[{4,k},"EdgeIndices"]],s],{k,1,11}]]/.Table[s[i] -> n,{i,1,4}],{n,0,30}] (* Geoffrey Critzer, Oct 22 2012 *) CoefficientList[Series[(1 + 3 x + 7 x^2 + 3 x^3 + x^4) (1 + x) / (1 - x)^7, {x, 0, 35}], x] (* Vincenzo Librandi, Jul 21 2013 *) LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,11,66,276,900,2451,5831},40] (* Harvey P. Dale, Sep 10 2023 *)
Formula
a(n) = (1/4!)*(n^6 + 6*n^5 + 24*n^4 + 56*n^3 + 83*n^2 + 70*n + 24).
G.f.: (1 + 3*x + 7*x^2 + 3*x^3 + x^4)*(1+x)/(1-x)^7. - M. F. Hasler, Jan 19 2012
Extensions
More terms from Vladeta Jovovic, Sep 02 2001
Comments