cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063842 Number of colorings of K_4 using at most n colors.

Original entry on oeis.org

1, 11, 66, 276, 900, 2451, 5831, 12496, 24651, 45475, 79376, 132276, 211926, 328251, 493725, 723776, 1037221, 1456731, 2009326, 2726900, 3646776, 4812291, 6273411, 8087376, 10319375, 13043251, 16342236, 20309716, 25050026, 30679275, 37326201, 45133056
Offset: 0

Views

Author

N. J. A. Sloane, Aug 25 2001

Keywords

Comments

a(n-1) is the number of unoriented ways to color the edges of a regular tetrahedron with up to n colors.

Crossrefs

A row of A063841. Cf. A063843.
A327084(3,n) = a(n-1) (unoriented simplex edge colorings)

Programs

  • Magma
    [1/24*(n^6+6*n^5+24*n^4+56*n^3+83*n^2+70*n+24): n in [0..35]]; // Vincenzo Librandi, Jul 21 2013
  • Mathematica
    Needs["Combinatorica`"]
    Table[Total[Table[CycleIndex[KSubsetGroup[GraphData[{4,k},"Automorphisms"],GraphData[{4,k},"EdgeIndices"]],s],{k,1,11}]]/.Table[s[i] -> n,{i,1,4}],{n,0,30}]  (* Geoffrey Critzer, Oct 22 2012 *)
    CoefficientList[Series[(1 + 3 x + 7 x^2 + 3 x^3 + x^4) (1 + x) / (1 - x)^7, {x, 0, 35}], x] (* Vincenzo Librandi, Jul 21 2013 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,11,66,276,900,2451,5831},40] (* Harvey P. Dale, Sep 10 2023 *)

Formula

a(n) = (1/4!)*(n^6 + 6*n^5 + 24*n^4 + 56*n^3 + 83*n^2 + 70*n + 24).
G.f.: (1 + 3*x + 7*x^2 + 3*x^3 + x^4)*(1+x)/(1-x)^7. - M. F. Hasler, Jan 19 2012

Extensions

More terms from Vladeta Jovovic, Sep 02 2001