A063906 Numbers m such that m = 2*sigma(m)/3 - 1.
15, 207, 1023, 2975, 19359, 147455, 1207359, 5017599, 2170814463, 58946212863, 1166333691001023, 36472996363223648799
Offset: 1
Examples
sigma(1207359) = 1811040; 1811040 - 1207359 - 1 = 603680; abs(603680 - 1207359) + 1 = 603680.
Links
- Antal Bege and Kinga Fogarasi, Generalized perfect numbers, Acta Univ. Sapientiae, Math., 1 (2009), 73-82.
Programs
-
ARIBAS
for n := 1 to 4000000 do s := sigma(n) - n - 1; t := abs(s - n) + 1; if s = t then write(n," "); end; end;
-
Magma
[n: n in [1..6*10^6] | 2*DivisorSigma(1,n)/3-1 eq n]; // Vincenzo Librandi, Oct 10 2017
-
Maple
select(n -> numtheory:-sigma(n) = 3/2*(n+1), [seq(i,i=1..10^6,2)]); # Robert Israel, Jan 12 2016
-
Mathematica
Select[Range[10^6], 2 * DivisorSigma[1, #]/3 - 1 == # &] (* Giovanni Resta, Apr 14 2016 *)
-
PARI
s(n) = sigma(n)-n-1; t(n) = abs(s(n)-n)+1; for(n=1,10^8, if(t(n)==s(n),print1(n, ", ")))
Extensions
More terms from Klaus Brockhaus, Sep 01 2001
a(9)-a(10) from Giovanni Resta, Apr 14 2016
Simpler title suggested by Giovanni Resta, Apr 14 2016, based on formula provided by Paolo P. Lava, Jan 12 2016
a(11)-a(12) from Max Alekseyev, Jul 30 2025
Comments