cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A063922 Numbers k such that k^5 = a^5 + b^5 + c^5 + d^5 + e^5 has a nontrivial solution in nonnegative integers.

Original entry on oeis.org

72, 94, 107, 144, 188, 214, 216, 282, 288, 321, 360, 365, 376, 415, 427, 428, 432, 435, 470, 480, 503, 504, 530, 535, 553, 564, 575, 576, 642, 648, 650, 658, 700, 703, 716, 720, 729, 730, 744, 749, 752, 764, 792, 804, 830, 846, 848, 851, 854, 856, 864, 870
Offset: 1

Views

Author

David W. Wilson, Aug 31 2001

Keywords

Comments

Any multiple of a term is again a term of this sequence. See A063923 for the primitive solutions. See A007666 for similar solutions for other powers. - M. F. Hasler, Nov 17 2015
Nontrivial means at least two of a,b,c,d,e are nonzero. - Jianing Song, Jan 24 2020

Examples

			   72^5 = 19^5 + 43^5 + 46^5 + 47^5 +  67^5;
   94^5 = 21^5 + 23^5 + 37^5 + 79^5 +  84^5;
  107^5 =  7^5 + 43^5 + 57^5 + 80^5 + 100^5.
		

Crossrefs

Cf. A063923.
For fourth powers: A003828, A175610, A039664, A003294.

A134341 Numbers whose fifth powers have a partition as a sum of fifth powers of four positive integers.

Original entry on oeis.org

144, 288, 432, 576, 720, 864, 1008, 1152, 1296, 1440, 1584, 1728, 1872, 2016, 2160, 2304, 2448, 2592, 2736, 2880, 3024, 3168, 3312, 3456, 3600, 3744, 3888, 4032, 4176, 4320, 4464, 4608, 4752, 4896, 5040, 5184, 5328, 5472, 5616, 5760, 5904, 6048, 6192
Offset: 1

Views

Author

Artur Jasinski, Oct 21 2007

Keywords

Comments

The only primitive terms (that is, in which the summands do not all have a common factor) known are 144 and 85359. - Jianing Song, Jan 24 2020
The paper by Lander and Parkin where they just give the first known counterexample to Euler's conjecture, 27^5 + 84^5 + 110^5 + 133^5 = 144^5, found using a CDC6600, is known as one of the shortest published proofs. - M. F. Hasler, Mar 11 2020

Examples

			a(1) = 144 because 144^5 = 27^5 + 84^5 + 110^5 + 133^5;
a(593) = 85359 because 85359^5 = 55^5 + 3183^5 + 28969^5 + 85282^5 = 4531548087264753520490799 (Jim Frye 2005). [Typo corrected by _Sébastien Palcoux_, Jul 05 2017]
		

References

  • L. E. Dickson, History of the theory of numbers, Vol. 2, Chelsea, New York, 1952, p. 648.

Crossrefs

Extensions

Incorrect formula removed by Jianing Song, Jan 24 2020

A331675 Numbers k such that k^4 = a^4 + b^4 + c^4 + d^4 has at least two positive primitive solutions.

Original entry on oeis.org

31127, 41963, 72899, 154789, 195479, 208471
Offset: 1

Views

Author

Jianing Song, Jan 24 2020

Keywords

Comments

Primitive solutions means gcd(a,b,c,d) = 1.
These are all terms from Jaroslaw Wroblewski link, which gives all positive solutions to k^4 = a^4 + b^4 + c^4 + d^4 where k < 222000, gcd(a,b,c,d) = 1.

Examples

			Solutions to k^4 = a^4 + b^4 + c^4 + d^4 = a'^4 + b'^4 + c'^4 + d'^4:
31127: (2260, 4870, 17386, 30335), (2495, 11998, 16430, 30320);
41963: (1100, 17260, 25015, 40234), (8750, 12109, 14470, 41720);
72899: (4555, 44270, 58868, 59330), (9700, 16480, 47618, 69265);
154789: (49586, 55450, 102170, 145615), (66405, 106740, 119760, 121664);
195479: (12970, 43340, 140947, 180520), (25570, 41080, 112822, 189695);
208471: (3903, 46560, 61290, 207950), (91045, 149222, 150550, 168730).
		

Crossrefs

Subsequence of A039664 (and thus of A003294).
Other similar sequences:
A023041 (k^3=a^3+b^3+c^3, gcd(a,b,c)=1);
A003828 (k^4=a^4+b^4+c^4, gcd(a,b,c)=1);
A175610 (k^4=a^4+b^4+c^4);
A134341 (k^5=a^5+b^5+c^5+d^5);
A063923 (k^5=a^5+b^5+c^5+d^5+e^5, gcd(a,b,c,d,e)=1);
A063922 (k^5=a^5+b^5+c^5+d^5+e^5);
A331674 (k^5=a^5+b^5+c^5+d^5+e^5, gcd(a,b,c,d,e)=1, at least two solutions).

A347773 Square array read by antidiagonals downwards: T(n,k) is the smallest positive integer whose n-th power is the sum of k n-th powers of positive integers, or 0 if no such number exists.

Original entry on oeis.org

1, 2, 1, 3, 5, 1, 4, 3, 0, 1, 5, 2, 6, 0, 1, 6, 4, 7, 422481, 0, 1, 7, 3, 4, 353
Offset: 1

Views

Author

Eric Chen, Sep 15 2021

Keywords

Comments

a(26) = T(5,3) is conjectured to be 0, but this has not been proved.
By Fermat's last theorem, T(n,2) = 0 for n > 2.
Euler's sum of powers conjecture is that T(n,k) = 0 for n > k > 1, but this conjecture is not true: T(4,3) = 422481, T(5,4) = 144, there are no known counterexamples for n >= 6.
There are no known 0s for k > 2.
Conjecture: If T(n,k) = 0, then T(r,k) = T(n,s) = T(r,s) = 0 for all r >= n, 2 <= s <= k.

Examples

			Table begins:
  n\k |  1   2       3    4   5   6     7     8
  ----+----------------------------------------
   1  |  1   2       3    4   5   6     7     8
   2  |  1   5       3    2   4   3     4     4
   3  |  1   0       6    7   4   3     5     2
   4  |  1   0  422481  353   5   3     9    13
   5  |  1   0       ?  144  72  12    23    14
   6  |  1   0       ?    ?   ?   ?  1141   251
   7  |  1   0       ?    ?   ?   ?   568   102
   8  |  1   0       ?    ?   ?   ?     ?  1409
T(2,5) = 4 because 4^2 = 1^2 + 1^2 + 1^2 + 2^2 + 3^2 and there is no smaller square that is the sum of 5 positive squares.
T(4,3) = 422481 because 422481^4 = 95800^4 + 217519^4 + 414560^4 and there is no smaller 4th power that is the sum of 3 positive 4th powers.
T(7,7) = 568 because 568^7 = 127^7 + 258^7 + 266^7 + 413^7 + 430^7 + 439^7 + 525^7 and there is no smaller 7th power that is the sum of 7 positive 7th powers.
		

Crossrefs

Cf. A007666 (main diagonal), A264764 (subdiagonal for k = n-1).
Cf. A175610 and A003828 (both for a(19) = T(4,3) = 422481).
Cf. A003294 and A039664 (both for a(25) = T(4,4) = 353).
Cf. A134341 (for a(33) = T(5,4) = 144).
Cf. A063922 and A063923 (both for a(41) = T(5,5) = 72).
Cf. A130012, A130022 (these two sequences are not rows of this table, since they require DISTINCT n-th powers, but this table does not have that requirement).

Programs

  • PARI
    /* return 0 instead of 1 for n=1, and oo loop when T(n, k)=0 */ A347773(p, n, s, m)={ /* Check whether s can be written as sum of n positive p-th powers not larger than m^p. If so, return the base a of the largest term a^p. */ s>n*m^p && return; n==1&&return(ispower(s, p, &n)*n); /* if s and m are not given, s>=n and m are arbitrary. */ !s&&for(m=round(sqrtn(n, p)), 9e9, A347773(p, n, m^p, m-1)&&return(m)); for(a=ceil(sqrtn(s\n, p)), min(sqrtn(max(0, s-n+1), p), m), A347773(p, n-1, s-a^p, a)&&return(a)); } /* after M. F. Hasler in A007666 */ /* Just enter "A347773(n, k)" to get T(n, k) */

Formula

T(n,1) = 1.
T(1,k) = k.
T(n,2) = 0 for n > 2.
T(n,n) = A007666(n).
T(n,n-1) = A264764(n).
T(3,k) <= A130012(k).
T(4,k) <= A130022(k).

A376289 Values k for primitive solutions to k^5 + a^5 + b^5 = c^5 + d^5 + e^5 with k >= a >= b >= 0 and k > c >= d >= e >= 0, repetitions allowed.

Original entry on oeis.org

66, 67, 74, 83, 107, 118, 119, 123, 136, 142, 152, 155, 169, 170, 181, 182, 186, 201, 204, 215, 216, 224, 229, 233, 234, 248, 258, 264, 274, 282, 283, 286, 288, 289, 293, 294, 307, 310, 310, 328, 331, 348, 364, 364, 373, 377, 378, 394, 399, 413, 417, 420, 421, 425, 426, 430, 430, 433, 436, 448, 459, 470, 474, 480, 486, 490, 498
Offset: 1

Views

Author

Artur Jasinski, Sep 19 2024

Keywords

Comments

This case is known in literature as 5.3.3 (see e.g. Eric Weisstein's World of Mathematics).
Primitive means a solution has gcd(k,a,b,c,d,e) = 1.
For primitive solutions of the 5.1.5 case see A063923.
For primitive solutions of the 5.2.4 case see A376914.
Although the definition does not require all coefficients to be nonzero or distinct, all known solutions have k > a > b > 0 and c > d > e > 0.
In every known case, k+a+b-c-d-e is even and very often zero.
This sequence is infinite as follows:
1) Bremner's modified one parameter identity (with conditions k+a+b-c-d-e=0 and k-a=c-d):
(37888 + 67978*w + 53683*w^2 + 24217*w^3 + 6750*w^4 + 1164*w^5 + 115*w^6 + 5*w^7)^5+
(15744 + 33046*w + 29861*w^2 + 15193*w^3 + 4738*w^4 + 912*w^5 + 101*w^6 + 5*w^7)^5+
(16376 + 33534*w + 29739*w^2 + 14937*w^3 + 4622*w^4 + 888*w^5 + 99*w^6 + 5*w^7)^5
=
(27912 + 52390*w + 43165*w^2 + 20281*w^3 + 5882*w^4 + 1056*w^5 + 109*w^6 + 5*w^7)^5+
(5768 + 17458*w + 19343*w^2 + 11257*w^3 + 3870*w^4 + 804*w^5 + 95*w^6 + 5*w^7)^5+
(36328 + 64710*w + 50775*w^2 + 22809*w^3 + 6358*w^4 + 1104*w^5 + 111*w^6 + 5*w^7)^5
which generate members of this sequence for nonnegative w=0,1,2,3,...
2) Moessner's one parameter identity (k+a+b-c-d-e=40*n)
(a^36 + 8*a^26 + 12*a^16 + 20*a^11 - a^6)^5+
(a^33 - 12*a^23 - 28*a^13 - a^3)^5+
(a^30 + 20*a^25 - 12*a^20 - 8*a^10 - 1)^5
=
(a^36 + 8*a^26 + 12*a^16 - 20*a^11 - a^6)^5+
(a^33 + 28*a^23 + 12*a^13 - a^3)^5+
(a^30 - 20*a^25 - 12*a^20 - 8*a^10 - 1)^5
which generate members of this sequence for a=2,3,4,...
3) Moessner's two parameter identity (with condition k+a+b-c-d-e=0):
(75*x^7-230*x^6*y-113*x^5*y^2+510*x^4*y^3-407*x^3*y^4+62*x^2*y^5+125*x*y^6-150*y^7)^5+
(-175*x^7+170*x^6*y-391*x^5*y^2-30*x^4*y^3+451*x^3*y^4-602*x^2*y^5+115*x*y^6-50*y^7)^5+
(175*x^7-160*x^6*y+387*x^5*y^2-108*x^4*y^3+5*x^3*y^4-336*x^2*y^5+265*x*y^6-100*y^7)^6
=
(25*x^7-290*x^6*y+689*x^5*y^2-138*x^4*y^3+27*x^3*y^4-62*x^2*y^5+155*x*y^6-150*y^7)^5+
(-25*x^7-653*x^5*y^2+564*x^4*y^3-195*x^3*y^4-208*x^2*y^5+105*x*y^6-100*y^7)^5+
(75*x^7+70*x^6*y-153*x^5*y^2-54*x^4*y^3+217*x^3*y^4-606*x^2*y^5+245*x*y^6-50*y^7)^5
4) Choudhry and Wróblewski two parameter identity:
(2 p^15 q + 6 p^5 q^11)^5 +
(p^16 - 3 p^11 q^5 - 5 p^6 q^10 - p q^15)^5 +
(6 p^11 q^5 + 2 p q^15)^5
= (p^16 + 3 p^11 q^5 - 5 p^6 q^10 + p q^15)^5 +
(p^15 q + 5 p^10 q^6 + 3 p^5 q^11 - q^16)^5 +
(p^15 q - 5 p^10 q^6 + 3 p^5 q^11 + q^16)^5
5) Edward Brisse two parameter identity (with condition k+a+b-c-d-e=0):
(2*a^8*b+10*a^7*b^2-20*a^6*b^3+20*a^5*b^4-34*a^4*b^5-10*a^3*b^6+270*a^2*b^7-20*a*b^8+682*b^9)^5+
(-2*a^8*b+10*a^7*b^2+20*a^6*b^3+20*a^5*b^4+34*a^4*b^5-10*a^3*b^6-270*a^2*b^7-20*a*b^8-682*b^9)^5+
(a^9-22*a^5*b^4-125*a^3*b^6-79*a*b^8)^5
=
(a^8*b+10*a^7*b^2-10*a^6*b^3+20*a^5*b^4-92*a^4*b^5-160*a^3*b^6-15*a^2*b^7-320*a*b^8+341*b^9)^5+
(-a^8*b+10*a^7*b^2+10*a^6*b^3+20*a^5*b^4+92*a^4*b^5-160*a^3*b^6+15*a^2*b^7-320*a*b^8-341*b^9)^5+
(a^9-22*a^5*b^4+175*a^3*b^6+521*a*b^8)^5
When we take b=1 in this identity we obtain the Lander 1968 one parameter identity.

Examples

			67^5 + 28^5 + 24^5 = 62^5 + 54^5 + 3^5 so 67 is a term.
399^5 + 237^5 + 62^5 = 382^5 + 307^5 + 9^5 so 399 is a term.
310^5 + 118^5 + 102^5 = 271^5 + 270^5 + 49^5 and 310^5 + 124^5 + 116^5 = 294^5 + 235^5 + 21^5 so 310 is a repeated term.
		

Crossrefs

Programs

  • Mathematica
    ww = {}; Monitor[Do[Do[Do[Do[kk = PowersRepresentations[e^5 + d^5 + c^5 - k^5, 2, 5];
    If[kk != {},If[GCD[k, c, d, e, kk[[1]][[1]], kk[[1]][[2]]] == 1,
    AppendTo[ww, k]; Print[k];Print[{k, kk[[1]][[2]], kk[[1]][[1]], c, d, e}]]], {e, 0, d}],{d, 0, c}], {c, 0, k - 1}], {k, 4, 186}], {c, k}];ww
  • PARI
    lista(maxk, prfull=0)={for(k=1, maxk, for(a=0, k, for(b=0, a, my(s=k^5+a^5+b^5); for(c=sqrtnint(s\3,5), k-1, for(d=sqrtnint((s-c^5-1)\2,5)+1, min(c, sqrtnint(s-c^5,5)), my(e); if(ispower(s-c^5-d^5,5,&e) && gcd([k,a,b,c,d,e])==1, if(prfull, print([k,a,b,c,d,e]), print1(k, ", ") )) )))))} \\ Andrew Howroyd, Oct 08 2024

A376914 Values k for primitive solutions to k^5 + a^5 + b^5 + c^5 = d^5 + e^5 with k >= a >= b >= c > 0 and d >= e >= 0, repetitions allowed.

Original entry on oeis.org

28, 37, 50, 63, 82, 86, 94, 99, 100, 102, 104, 112, 114, 129, 130, 133, 135, 137, 156, 172, 174, 184, 191, 196, 200, 213, 221, 236, 237, 241, 252, 258, 260, 270, 271, 279, 282, 291, 291, 291
Offset: 1

Views

Author

Artur Jasinski, Oct 09 2024

Keywords

Comments

Primitive means a solution has gcd(k,a,b,c,d,e) = 1.
In most of cases d > k.
This case is known in literature as 5.2.4 (see e.g. Eric Weisstein's World of Mathematics).

Examples

			28^5 + 20^5 + 10^5 + 4^5 = 29^5 + 3^5 so 28 is a term.
133^5 + 110^5 + 84^5 + 27^5 = 144^5 + 0^5 so 133 is a term.
291^5 + 109^5 + 31^5 + 29^5 = 287^5 + 173^5 and 291^5 + 279^5 + 108^5 + 85^5 = 328^5 + 15^5 and 291^5 + 287^5 + 205^5 + 174^5 = 335^5 + 202^5 so 291 is included three times.
		

Crossrefs

Programs

  • Mathematica
    aa = {}; Monitor[Do[Do[Do[Do[kk = PowersRepresentations[k^5 + a^5 + b^5 + c^5, 2, 5];If[kk != {}, If[GCD[k,a,b,c,kk[[1]][[1]],kk[[1]][[2]]]==1,Print[{k, a, b, c, kk}]; AppendTo[aa, k]]], {c, 1, b}], {b, 1, a}], {a, 1, k}], {k, 1, 200}], {a, k}]; aa
  • PARI
    lista(maxk, mink=1,prfull=0)={for(k=mink, maxk, for(a=1, k, for(b=1, a, for(c=1,b,my(s=k^5+a^5+b^5+c^5);for(d=sqrtnint((s-1)\2,5)+1,  sqrtnint(s,5), my(e); if(ispower(s-d^5,5,&e) && gcd([k,a,b,c,d,e])==1, if(prfull, print([k,a,b,c,d,e]), print1(k, ", ") )) )))))} \\ Andrew Howroyd, Oct 09 2024

Extensions

a(26)-a(40) from Andrew Howroyd, Oct 09 2024

A134297 a(n) = 107*n.

Original entry on oeis.org

0, 107, 214, 321, 428, 535, 642, 749, 856, 963, 1070, 1177, 1284, 1391, 1498, 1605, 1712, 1819, 1926, 2033, 2140, 2247, 2354, 2461, 2568, 2675, 2782, 2889, 2996, 3103, 3210, 3317, 3424, 3531, 3638, 3745, 3852, 3959, 4066, 4173, 4280, 4387, 4494, 4601, 4708
Offset: 0

Views

Author

Artur Jasinski, Oct 18 2007

Keywords

Comments

For n > 0, a(n)^5 has a partition as the sum of fifth powers of five positive numbers: (107n)^5 = (7n)^5 + (43n)^5 + (57n)^5 + (80n)^5 + (100n)^5. [Corrected by Jianing Song, Jan 24 2020]

Examples

			107^5 = 7^5 + 43^5 + 57^5 + 80^5 + 100^5.
		

Crossrefs

Without the initial 0, subsequence of A063922 (k such that k^5 = a^5+b^5+c^5+d^5+e^5, where at least two of a,b,c,d,e are nonzero).

Programs

  • Mathematica
    Table[107n, {n, 0, 30}]
  • PARI
    a(n) = 107*n \\ Jianing Song, Jan 24 2020

Formula

G.f.: 107*x/(-1+x)^2. - R. J. Mathar, Nov 14 2007

Extensions

a(0) prepended by Jianing Song, Jan 24 2020

A331674 Numbers k such that k^5 = a^5 + b^5 + c^5 + d^5 + e^5 has at least two primitive solutions in nonnegative integers.

Original entry on oeis.org

744, 1686, 1921, 2087, 3447, 4097, 6065, 7157, 7864, 8570
Offset: 1

Views

Author

Jianing Song, Jan 24 2020

Keywords

Comments

Primitive solutions means gcd(a,b,c,d,e) = 1.
These are all terms from James Waldby link, which gives all solutions to k^5 = a^5 + b^5 + c^5 + d^5 + e^5 where k < 10000, gcd(a,b,c,d,e) = 1 and at least two of a,b,c,d,e are nonzero.
Note that if nonprimitive solutions were allowed (where at least two of a,b,c,d,e are nonzero), then 144 would be a term because 144^5 = 0^5 + 27^5 + 84^5 + 110^5 + 133^5 = 38^5 + 86^5 + 92^5 + 94^5 + 134^5.

Examples

			Solutions to k^5 = a^5 + b^5 + c^5 + d^5 + e^5 = a'^5 + b'^5 + c'^5 + d'^5 + e'^5:
744: (100, 210, 414, 629, 651), (14, 95, 545, 586, 644);
1686: (265, 486, 784, 791, 1670), (46, 591, 675, 999, 1655);
1921: (275, 351, 872, 1298, 1855), (95, 771, 1020, 1519, 1756);
2087: (145, 565, 1105, 1462, 1990), (519, 642, 1026, 1480, 1990);
3447: (1212, 1300, 1345, 1699, 3411), (289, 317, 1033, 1682, 3426);
4097: (1281, 2154, 2396, 3462, 3504), (954, 1989, 2127, 2396, 3981);
6065: (3629, 3811, 4070, 4272, 5313), (854, 3160, 3752, 5073, 5196);
7157: (1827, 2186, 4789, 5629, 6376), (930, 2746, 3570, 5109, 6802);
7864: (1093, 2309, 3629, 6137, 7296), (312, 1631, 3418, 3544, 7809);
8570: (1766, 2529, 4086, 5520, 8319), (2101, 2315, 2710, 3960, 8524).
		

Crossrefs

Subsequence of A063923 (and thus of A063922).
Other similar sequences:
A023041 (k^3=a^3+b^3+c^3, gcd(a,b,c)=1);
A003828 (k^4=a^4+b^4+c^4, gcd(a,b,c)=1);
A175610 (k^4=a^4+b^4+c^4);
A039664 (k^4=a^4+b^4+c^4+d^4, gcd(a,b,c,d)=1);
A003294 (k^4=a^4+b^4+c^4+d^4);
A331675 (k^4=a^4+b^4+c^4+d^4, gcd(a,b,c,d)=1, at least two solutions).
A134341 (k^5=a^5+b^5+c^5+d^5).

A350430 a(n) is the smallest n-th power which can be represented as the sum of n distinct positive n-th powers in exactly n ways, or -1 if none exists.

Original entry on oeis.org

1, 625, 157464
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 30 2021

Keywords

Comments

From Jon E. Schoenfield, Dec 30 2021: (Start)
222000^4 < a(4) < 4891341^4 = lcm(2829, 12259, 16359, 30381)^4 (see A039664, including the Wroblewski link).
10000^5 <= a(5) < 12528^5 = lcm(72, 1044, 1392, 2088, 3132)^5 (see A063923, including the Waldby link; note that, although the terms of A063923 include 72, 144, 1044, 1392, and 2088, whose LCM is only 4176, the primitive solution in which the sum of 5 distinct 5th powers is 144^5 is 0^5 + 27^5 + 84^5 + 110^5 + 133^5 = 144^5, which is not the sum of 5 positive n-th powers).
Conjecture: a(6) = -1. (End)

Examples

			For n = 2: 625 = 25^2 = 7^2 + 24^2 = 15^2 + 20^2.
For n = 3: 157464 = 54^3 = 6^3 + 36^3 + 48^3 = 12^3 + 19^3 + 53^3 = 27^3 + 36^3 + 45^3.
		

Crossrefs

Showing 1-9 of 9 results.