A063985 Partial sums of cototient sequence A051953.
0, 1, 2, 4, 5, 9, 10, 14, 17, 23, 24, 32, 33, 41, 48, 56, 57, 69, 70, 82, 91, 103, 104, 120, 125, 139, 148, 164, 165, 187, 188, 204, 217, 235, 246, 270, 271, 291, 306, 330, 331, 361, 362, 386, 407, 431, 432, 464, 471, 501, 520, 548, 549, 585, 600, 632, 653, 683
Offset: 1
Keywords
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
Programs
-
Haskell
a063985 n = length [()| x <- [1..n], y <- [x..n], gcd x y > 1] -- Reinhard Zumkeller, Jan 21 2013
-
Java
// Save the file as A063985.java to compile and run import java.util.stream.IntStream; import java.util.*; public class A063985 { public static int getInvisiblePoints(int n) { Set
slopes = new HashSet (); IntStream.rangeClosed(1, n).forEach(i -> {IntStream.rangeClosed(1, n).forEach(j -> slopes.add(Float.valueOf((float)i/(float)j))); }); return (n * n - slopes.size() + n - 1) / 2; } public static void main(String args[]) throws Exception { IntStream.rangeClosed(1, 30).forEach(i -> System.out.println(getInvisiblePoints(i))); } } // Kiran Ananthpur Bacche, May 25 2022 -
Mathematica
f[n_] := n(n + 1)/2 - Sum[ EulerPhi@i, {i, n}]; Array[f, 58] (* Robert G. Wilson v *) Accumulate[Table[n-EulerPhi[n],{n,1,60}]] (* Harvey P. Dale, Aug 19 2015 *)
-
PARI
{ a=0; for (n=1, 1000, write("b063985.txt", n, " ", a+=n - eulerphi(n)) ) } \\ Harry J. Smith, Sep 04 2009
-
Python
from sympy.ntheory import totient def a(n): return sum(x - totient(x) for x in range(1,n + 1)) [a(n) for n in range(1, 51)] # Indranil Ghosh, Mar 18 2017
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A063985(n): # based on second formula in A018805 if n == 0: return 0 c, j = 0, 2 k1 = n//j while k1 > 1: j2 = n//k1 + 1 c += (j2-j)*(k1*(k1+1)-2*A063985(k1)-1) j, k1 = j2, n//j2 return (2*n+c-j)//2 # Chai Wah Wu, Mar 24 2021
Formula
a(n) = Sum_{x=1..n} (x - phi(x)) = Sum(x) - Sum(phi(x)) = A000217(n) - A002088(n), phi(n) = A000010(n), cototient(n) = A051953(n).
a(n) = n^2 - A091369(n). - Enrique Pérez Herrero, Feb 25 2012
G.f.: x/(1 - x)^3 - (1/(1 - x))*Sum_{k>=1} mu(k)*x^k/(1 - x^k)^2. - Ilya Gutkovskiy, Mar 18 2017
a(n) = (1/2 - 3/Pi^2)*n^2 + O(n*log(n)). - Amiram Eldar, Jul 26 2022
Extensions
Corrected by Robert G. Wilson v, Dec 13 2006
Comments