cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063990 Amicable numbers.

Original entry on oeis.org

220, 284, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368, 10744, 10856, 12285, 14595, 17296, 18416, 63020, 66928, 66992, 67095, 69615, 71145, 76084, 79750, 87633, 88730, 100485, 122265, 122368, 123152, 124155, 139815, 141664, 142310
Offset: 1

Views

Author

N. J. A. Sloane, Sep 18 2001

Keywords

Comments

A pair of numbers x and y is called amicable if the sum of the proper divisors of either one is equal to the other. The smallest pair is x = 220, y = 284.
The sequence lists the amicable numbers in increasing order. Note that the pairs x, y are not adjacent to each other in the list. See also A002025 for the x's, A002046 for the y's.
Theorem: If the three numbers p = 3*(2^(n-1)) - 1, q = 3*(2^n) - 1 and r = 9*(2^(2n-1)) - 1 are all prime where n >= 2, then p*q*(2^n) and r*(2^n) are amicable numbers. This 9th century theorem is due to Thabit ibn Kurrah (see for example, the History of Mathematics by David M. Burton, 6th ed., p. 510). - Mohammad K. Azarian, May 19 2008
The first time a pair ordered by its first element is not adjacent is x = 63020, y = 76084 which correspond to a(17) and a(23), respectively. - Omar E. Pol, Jun 22 2015
For amicable pairs see A259180 and also A259933. First differs from A259180 (amicable pairs) at a(18). - Omar E. Pol, Jun 01 2017
Sierpiński (1964), page 176, mentions Erdős's work on the number of pairs of amicable numbers <= x. - N. J. A. Sloane, Dec 27 2017
Kanold (1954) proved that the asymptotic upper density of amicable numbers is < 0.204 and Erdős (1955) proved that it is 0. - Amiram Eldar, Feb 13 2021

References

  • Scott T. Cohen, Mathematical Buds, Ed. Harry D. Ruderman, Vol. 1, Chap. VIII, pp. 103-126, Mu Alpha Theta, 1984.
  • Clifford A. Pickover, The Math Book, Sterling, NY, 2009; see p. 90.
  • Wacław Sierpiński, Elementary Theory of Numbers, Panst. Wyd. Nauk, Warsaw, 1964.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 137-141.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 145-147.

Crossrefs

Union of A002025 and A002046.
A180164 (gives for each pair (x, y) the value x+y = sigma(x)+sigma(y)).
Cf. A259180.

Programs

  • Maple
    F:= proc(t) option remember; numtheory:-sigma(t)-t end proc:
    select(t -> F(t) <> t and F(F(t))=t, [$1.. 200000]); # Robert Israel, Jun 22 2015
  • Mathematica
    s[n_] := DivisorSigma[1, n] - n; AmicableNumberQ[n_] := If[Nest[s, n, 2] == n && ! s[n] == n, True, False]; Select[Range[10^6], AmicableNumberQ[ # ] &] (* Ant King, Jan 02 2007 *)
    Select[Tally[Sort/@Table[{n,DivisorSigma[1,n]-n},{n,200000}]],#[[2]]==2&][[;;,1]]//Flatten//Sort (* Harvey P. Dale, Jan 13 2025 *)
  • PARI
    aliquot(n)=sigma(n)-n
    isA063990(n)={if (n>1, local(a);a=aliquot(n);a<>n && aliquot(a)==n)} \\ Michael B. Porter, Apr 13 2010
    
  • Python
    from sympy import divisors
    A063990 = [n for n in range(1,10**5) if sum(divisors(n))-2*n and not sum(divisors(sum(divisors(n))-n))-sum(divisors(n))] # Chai Wah Wu, Aug 14 2014

Formula

Pomerance shows that there are at most x/exp(sqrt(log x log log log x)/(2 + o(1))) terms up to x for sufficiently large x. - Charles R Greathouse IV, Jul 21 2015
Sum_{n>=1} 1/a(n) is in the interval (0.0119841556, 215) (Nguyen and Pomerance, 2019; an upper bound 6.56*10^8 was given by Bayless and Klyve, 2011). - Amiram Eldar, Oct 15 2020