A063990 Amicable numbers.
220, 284, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368, 10744, 10856, 12285, 14595, 17296, 18416, 63020, 66928, 66992, 67095, 69615, 71145, 76084, 79750, 87633, 88730, 100485, 122265, 122368, 123152, 124155, 139815, 141664, 142310
Offset: 1
Keywords
References
- Scott T. Cohen, Mathematical Buds, Ed. Harry D. Ruderman, Vol. 1, Chap. VIII, pp. 103-126, Mu Alpha Theta, 1984.
- Clifford A. Pickover, The Math Book, Sterling, NY, 2009; see p. 90.
- Wacław Sierpiński, Elementary Theory of Numbers, Panst. Wyd. Nauk, Warsaw, 1964.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 137-141.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, 1987, pp. 145-147.
Links
- T. D. Noe, Table of n, a(n) for n = 1..77977 (terms < 10^14 from Pedersen's tables)
- Titu Andreescu, Number Theory Trivia: Amicable Numbers.
- Titu Andreescu, Number Theory Trivia: Amicable Numbers.
- Anonymous, Amicable Pairs Applet Test.
- Anonymous, Amicable and Social Numbers. [broken link]
- Jonathan Bayless and Dominic Klyve, On the sum of reciprocals of amicable numbers, Integers, Vol. 11A (2011), Article 5.
- Sergei Chernykh, Table of n, a(n) for n = 1..823818, zipped file (results of an exhaustive search for all amicable pairs with smaller member < 10^17).
- Sergei Chernykh, Amicable pairs list.
- Germano D'Abramo, On Amicable Numbers With Different Parity, arXiv:math/0501402 [math.HO], 2005-2007.
- Paul Erdős, On amicable numbers, Pub. Math. Debrecen, Vol. 4 (1955), pp. 108-111.
- Leonhard Euler, On amicable numbers, arXiv:math/0409196 [math.HO], 2004-2009.
- Steven Finch, Amicable Pairs and Aliquot Sequences, 2013. [Cached copy, with permission of the author]
- Mariano García, A Million New Amicable Pairs, J. Integer Sequences, Vol. 4 (2001), Article #01.2.6.
- Mariano García, Jan Munch Pedersen, Herman te Riele, Amicable pairs, a survey, Report MAS-R0307, Centrum Wiskunde & Informatica.
- Hans-Joachim Kanold, Über die Dichten der Mengen der vollkommenen und der befreundeten Zahlen, Mathematische Zeitschrift, Vol. 61 (1954), pp. 180-185.
- Hisanori Mishima, Amicable Numbers: first 236 pairs (smaller member < 10^8) fully factorized.
- David Moews, A List Of The First 5001 Amicable Pairs.
- David and P. C. Moews, A List Of Amicable Pairs Below 2.01*10^11
- Hanh My Nguyen and Carl Pomerance, The reciprocal sum of the amicable numbers, Mathematics of Computation, Vol. 88, No. 317 (2019), pp. 1503-1526, alternative link.
- Passawan Noppakaew and Prapanpong Pongsriiam, Product of Some Polynomials and Arithmetic Functions, J. Int. Seq. (2023) Vol. 26, Art. 23.9.1.
- Number Theory List, NMBRTHRY Archives--August 1993.
- J. O. M. Pedersen, Tables of Aliquot Cycles. [Broken link]
- J. O. M. Pedersen, Tables of Aliquot Cycles. [Via Internet Archive Wayback-Machine]
- J. O. M. Pedersen, Tables of Aliquot Cycles [Cached copy, pdf file only]
- Ivars Peterson, Appealing Numbers, MathTrek, 2001.
- Ivars Peterson, Amicable Pairs, Divisors and a New Record, MathTrek, 2004.
- Paul Pollack, Quasi-Amicable Numbers are Rare, J. Int. Seq., Vol. 14 (2011), Article # 11.5.2.
- Carl Pomerance, On amicable numbers, in: C. Pomerance and M. Rassias M. (eds.), Analytic number theory, Springer, Cham, 2015, pp. 321-327; alternative link.
- Herman J. J. te Riele, On generating new amicable pairs from given amicable pairs, Math. Comp., Vol. 42, No. 165 (1984), pp. 219-223.
- Herman J. J. te Riele, Computation of all the amicable pairs below 10^10, Math. Comp., Vol. 47, No. 175 (1986), pp. 361-368 and Supplement pp. S9-S40.
- Herman J. J. te Riele, A New Method for Finding Amicable Pairs, Proceedings of Symposia in Applied Mathematics, Volume 48, 1994.
- Ed Sandifer, Amicable numbers.
- Gérard Villemin's Almanach of Numbers, Nombres amiables et sociables.
- Eric Weisstein's World of Mathematics, Amicable Pair.
- Wikipedia, Amicable number.
Crossrefs
Programs
-
Maple
F:= proc(t) option remember; numtheory:-sigma(t)-t end proc: select(t -> F(t) <> t and F(F(t))=t, [$1.. 200000]); # Robert Israel, Jun 22 2015
-
Mathematica
s[n_] := DivisorSigma[1, n] - n; AmicableNumberQ[n_] := If[Nest[s, n, 2] == n && ! s[n] == n, True, False]; Select[Range[10^6], AmicableNumberQ[ # ] &] (* Ant King, Jan 02 2007 *) Select[Tally[Sort/@Table[{n,DivisorSigma[1,n]-n},{n,200000}]],#[[2]]==2&][[;;,1]]//Flatten//Sort (* Harvey P. Dale, Jan 13 2025 *)
-
PARI
aliquot(n)=sigma(n)-n isA063990(n)={if (n>1, local(a);a=aliquot(n);a<>n && aliquot(a)==n)} \\ Michael B. Porter, Apr 13 2010
-
Python
from sympy import divisors A063990 = [n for n in range(1,10**5) if sum(divisors(n))-2*n and not sum(divisors(sum(divisors(n))-n))-sum(divisors(n))] # Chai Wah Wu, Aug 14 2014
Formula
Pomerance shows that there are at most x/exp(sqrt(log x log log log x)/(2 + o(1))) terms up to x for sufficiently large x. - Charles R Greathouse IV, Jul 21 2015
Sum_{n>=1} 1/a(n) is in the interval (0.0119841556, 215) (Nguyen and Pomerance, 2019; an upper bound 6.56*10^8 was given by Bayless and Klyve, 2011). - Amiram Eldar, Oct 15 2020
Comments