cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063995 Irregular triangle read by rows: T(n,k), n >= 1, -(n-1) <= k <= n-1, = number of partitions of n with rank k.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 1, 3, 1, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 2, 3, 2, 3, 2, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 2, 3, 3, 4, 3, 3, 2, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2, 2, 4, 3, 5, 4, 5, 3, 4, 2, 2, 1, 1, 0, 1, 1, 0, 1, 1, 2
Offset: 1

Views

Author

N. J. A. Sloane, Sep 19 2001

Keywords

Comments

The rank of a partition is the largest part minus the number of parts.
The rows are symmetric: for every partition of rank r there is its conjugate with rank -r. [Joerg Arndt, Oct 07 2012]

Examples

			The partition 5 = 4+1 has largest summand 4 and 2 summands, hence has rank 4-2 = 2.
Triangle begins:
[ 1]                               1,
[ 2]                            1, 0, 1,
[ 3]                         1, 0, 1, 0, 1,
[ 4]                      1, 0, 1, 1, 1, 0, 1,
[ 5]                   1, 0, 1, 1, 1, 1, 1, 0, 1,
[ 6]                1, 0, 1, 1, 2, 1, 2, 1, 1, 0, 1,
[ 7]             1, 0, 1, 1, 2, 1, 3, 1, 2, 1, 1, 0, 1,
[ 8]          1, 0, 1, 1, 2, 2, 3, 2, 3, 2, 2, 1, 1, 0, 1,
[ 9]       1, 0, 1, 1, 2, 2, 3, 3, 4, 3, 3, 2, 2, 1, 1, 0, 1,
[10]    1, 0, 1, 1, 2, 2, 4, 3, 5, 4, 5, 3, 4, 2, 2, 1, 1, 0, 1,
[11] 1, 0, 1, 1, 2, ...
Row 20 is:
T(20, k) = 1, 0, 1, 1, 2, 2, 4, 4, 7, 8, 12, 14, 20, 22, 30, 33, 40, 42, 48, 45, 48, 42, 40, 33, 30, 22, 20, 14, 12, 8, 7, 4, 4, 2, 2, 1, 1, 0, 1; -19 <= k <= 19.
Another view of the table of p(n,m) = number of partitions of n with rank m, taken from Dyson (1969):
n\m -6 -5  -4  -3  -2  -1   0   1   2   3   4   5   6
-----------------------------------------------------
0   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
1   0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0,
2   0,  0,  0,  0,  0,  1,  0,  1,  0,  0,  0,  0,  0,
3   0,  0,  0,  0,  1,  0,  1,  0,  1,  0,  0,  0,  0,
4   0,  0,  0,  1,  0,  1,  1,  1,  0,  1,  0,  0,  0,
5   0,  0,  1,  0,  1,  1,  1,  1,  1,  0,  1,  0,  0,
6   0,  1,  0,  1,  1,  2,  1,  2,  1,  1,  0,  1,  0,
7   1,  0,  1,  1,  2,  1,  3,  1,  2,  1,  1,  0,  1,
...
The central triangle is the present sequence, the right-hand triangle is A105806. - _N. J. A. Sloane_, Jan 23 2020
		

Crossrefs

For the number of partitions of n with rank 0 (balanced partitions) see A047993.
Cf. A105806 (right half of triangle), A005408 (row lengths), A000041 (row sums), A047993 (central terms).
Cf. A000025.

Programs

  • Haskell
    import Data.List (sort, group)
    a063995 n k = a063995_tabf !! (n-1) !! (n-1+k)
    a063995_row n = a063995_tabf !! (n-1)
    a063995_tabf = [[1], [1, 0, 1]] ++ (map
       (\rs -> [1, 0] ++ (init $ tail $ rs) ++ [0, 1]) $ drop 2 $ map
       (map length . group . sort . map rank) $ tail pss) where
          rank ps = maximum ps - length ps
          pss = [] : map (\u -> [u] : [v : ps | v <- [1..u],
                                 ps <- pss !! (u - v), v <= head ps]) [1..]
    -- Reinhard Zumkeller, Jul 24 2013
  • Mathematica
    Table[ Count[ (First[ # ]-Length[ # ]& /@ IntegerPartitions[ k ]), # ]& /@ Range[ -k+1, k-1 ], {k, 16} ]

Formula

Sum_{k=-(n-1)..n-1} (-1)^k * T(n,k) = A000025(n). - Alois P. Heinz, Dec 20 2024

Extensions

More terms from Vladeta Jovovic and Wouter Meeussen, Sep 19 2001