cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A047993 Number of balanced partitions of n: the largest part equals the number of parts.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 3, 2, 4, 4, 6, 7, 11, 11, 16, 19, 25, 29, 40, 45, 60, 70, 89, 105, 134, 156, 196, 232, 285, 336, 414, 485, 591, 696, 839, 987, 1187, 1389, 1661, 1946, 2311, 2702, 3201, 3731, 4400, 5126, 6018, 6997, 8195, 9502, 11093, 12849, 14949, 17281, 20062
Offset: 1

Views

Author

Keywords

Comments

Useful in the creation of plane partitions with C3 or C3v symmetry.
The function T[m,a,b] used here gives the partitions of m whose Ferrers plot fits within an a X b box.
Central terms of triangle in A063995: a(n) = A063995(n,0). - Reinhard Zumkeller, Jul 24 2013
Sequence enumerates the collection of partitions of size n that are in the monoid of Dyson rank=0, or balanced partitions, under the binary operation A*B = (a1,a2,...,a[k-1],k)*(b1,...,b[n-1,n) = (a1*b1,...,a1*n,a2*b1,...,a2*n,...,k*b1,...,k*n), where A is a partition with k parts and B is a partition with n parts, and A*B is a partition with k*n parts. Note that the rank of A*B is 0, as required. For example, the product of the rank 0 partitions (1,2,3) of 6 and (1,1,3) of 5 is the rank 0 partition (1,1,2,2,3,3,3,6,9) of 30. There is no rank zero partition of 2, as shown in the sequence. It can be seen that any element of the monoid that partitions an odd prime p or a composite number of form 2p cannot be a product of smaller nontrivial partitions, whether in this monoid or not. - Richard Locke Peterson, Jul 15 2018
The "multiplication" given above was noted earlier by Franklin T. Adams-Watters in A122697. - Richard Peterson, Jul 19 2023
The Heinz numbers of these integer partitions are given by A106529. - Gus Wiseman, Mar 09 2019

Examples

			From _Joerg Arndt_, Oct 08 2012: (Start)
a(12) = 7 because the partitions of 12 where the largest part equals the number of parts are
   2 + 3 + 3 + 4,
   2 + 2 + 4 + 4,
   1 + 3 + 4 + 4,
   1 + 2 + 2 + 2 + 5,
   1 + 1 + 2 + 3 + 5,
   1 + 1 + 1 + 4 + 5, and
   1 + 1 + 1 + 1 + 2 + 6.
(End)
From _Gus Wiseman_, Mar 09 2019: (Start)
The a(1) = 1 through a(13) = 11 integer partitions:
  1  21  22  311  321  322   332   333    4222   4322    4332    4333
                       331   4211  4221   4321   4331    4422    4432
                       4111        4311   4411   4421    4431    4441
                                   51111  52111  52211   52221   52222
                                                 53111   53211   53221
                                                 611111  54111   53311
                                                         621111  54211
                                                                 55111
                                                                 622111
                                                                 631111
                                                                 7111111
(End)
		

Crossrefs

Programs

  • Haskell
    a047993 = flip a063995 0  -- Reinhard Zumkeller, Jul 24 2013
  • Maple
    A047993 := proc(n)
         a := 0 ;
         for p in combinat[partition](n) do
            r := max(op(p))-nops(p) ;
            if r = 0 then
                 a := a+1 ;
            end if;
         end do:
         a ;
     end proc:
    seq(A047993(n),n=1..20) ; # Emeric Deutsch, Dec 11 2004
  • Mathematica
    Table[ Count[Partitions[n], par_List/; First[par]===Length[par]], {n, 12}] or recur: Sum[T[n-(2m-1), m-1, m-1], {m, Ceiling[Sqrt[n]], Floor[(n+1)/2]}] with T[m_, a_, b_]/; b < a := T[m, b, a]; T[m_, a_, b_]/; m > a*b := 0; T[m_, a_, b_]/; (2m > a*b) := T[a*b-m, a, b]; T[m_, 1, b_] := If[b < m, 0, 1]; T[0, , ] := 1; T[m_, a_, b_] := T[m, a, b]=Sum[T[m-a*i, a-1, b-i], {i, 0, Floor[m/a]}];
    Table[Sum[ -(-1)^k*(p[n-(3*k^2-k)/2] - p[n-(3*k^2+k)/2]), {k, 1, Floor[(1+Sqrt[1+24*n])/6]}] /. p -> PartitionsP, {n, 1, 64}] (* Wouter Meeussen *)
    (* also *)
    Table[Count[IntegerPartitions[n], q_ /; Max[q] == Length[q]], {n, 24}]
    (* Clark Kimberling, Feb 13 2014 *)
    nmax = 100; p = 1; s = 1; Do[p = Normal[Series[p*x^2*(1 - x^(2*k - 1))*(1 + x^k)/(1 - x^k), {x, 0, nmax}]]; s += p;, {k, 1, nmax + 1}]; Take[CoefficientList[s, x], nmax] (* Vaclav Kotesovec, Oct 16 2024 *)
  • PARI
    N=66;  q='q + O('q^N );
    S=2+2*ceil(sqrt(N));
    gf= sum(k=1, S,  (-1)^k * ( q^((3*k^2+k)/2) - q^((3*k^2-k)/2) ) ) / prod(k=1,N, 1-q^k );
    /* Joerg Arndt, Oct 08 2012 */
    
  • PARI
    my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)*prod(j=1, k-1, (1-x^(k+j-1))/(1-x^j)))) \\ Seiichi Manyama, Jan 24 2022
    

Formula

a(n) = p(n-1) - p(n-2) - p(n-5) + p(n-7) + ... + (-1)^k*(p(n-(3*k^2-k)/2) - p(n-(3*k^2+k)/2)) + ..., where p() is A000041(). E.g., a(20) = p(19) - p(18) - p(15) + p(13) + p(8) - p(5) = 490 - 385 - 176 + 101 + 22 - 7 = 45. - Vladeta Jovovic, Aug 04 2004
G.f.: ( Sum_{k>=1} (-1)^k * ( x^((3*k^2+k)/2) - x^((3*k^2-k)/2) ) ) / Product_{k>=1} (1-x^k). - Vladeta Jovovic, Aug 05 2004
a(n) ~ exp(Pi*sqrt(2*n/3))*Pi / (48*sqrt(2)*n^(3/2)) ~ p(n) * Pi / (4*sqrt(6*n)), where p(n) is the partition function A000041. - Vaclav Kotesovec, Oct 06 2016
G.f.: Sum_{k>=1} x^(2*k-1) * Product_{j=1..k-1} (1-x^(k+j-1))/(1-x^j). - Seiichi Manyama, Jan 24 2022

A072233 Square array T(n,k) read by antidiagonals giving number of ways to distribute n indistinguishable objects in k indistinguishable containers; containers may be left empty.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 3, 3, 2, 1, 1, 0, 1, 3, 4, 3, 2, 1, 1, 0, 1, 4, 5, 5, 3, 2, 1, 1, 0, 1, 4, 7, 6, 5, 3, 2, 1, 1, 0, 1, 5, 8, 9, 7, 5, 3, 2, 1, 1, 0, 1, 5, 10, 11, 10, 7, 5, 3, 2, 1, 1, 0, 1, 6, 12, 15, 13, 11, 7, 5, 3, 2, 1, 1, 0, 1, 6, 14, 18, 18, 14, 11, 7, 5, 3, 2, 1, 1
Offset: 0

Views

Author

Martin Wohlgemuth (mail(AT)matroid.com), Jul 05 2002

Keywords

Comments

Regarded as a triangular table, this is another version of the number of partitions of n into k parts, A008284. - Franklin T. Adams-Watters, Dec 18 2006
From Gus Wiseman, Feb 10 2021: (Start)
T(n,k) is also the number of partitions of n with greatest part k, if we assume the greatest part of an empty partition to be 0. Row n = 9 counts the following partitions:
111111111 22221 333 432 54 63 72 81 9
222111 3222 441 522 621 711
2211111 3321 4221 531 6111
21111111 32211 4311 5211
33111 42111 51111
321111 411111
3111111
(End)

Examples

			Table begins (upper left corner = T(0,0)):
1 1 1  1  1  1  1  1  1 ...
0 1 1  1  1  1  1  1  1 ...
0 1 2  2  2  2  2  2  2 ...
0 1 2  3  3  3  3  3  3 ...
0 1 3  4  5  5  5  5  5 ...
0 1 3  5  6  7  7  7  7 ...
0 1 4  7  9 10 11 11 11 ...
0 1 4  8 11 13 14 15 15 ...
0 1 5 10 15 18 20 21 22 ...
There is 1 way to distribute 0 objects into k containers: T(0, k) = 1. The different ways for n=4, k=3 are: (oooo)()(), (ooo)(o)(), (oo)(oo)(), (oo)(o)(o), so T(4, 3) = 4.
From _Wolfdieter Lang_, Dec 03 2012 (Start)
The triangle a(n,k) = T(n-k,k) begins:
n\k  0  1  2  3  4  5  6  7  8  9 10 ...
00   1
01   0  1
02   0  1  1
03   0  1  1  1
04   0  1  2  1  1
05   0  1  2  2  1  1
06   0  1  3  3  2  1  1
07   0  1  3  4  3  2  1  1
08   0  1  4  5  5  3  2  1  1
09   0  1  4  7  6  5  3  2  1  1
10   0  1  5  8  9  7  5  3  2  1  1
...
Row n=5 is, for k=1..5, [1,2,2,1,1] which gives the number of partitions of n=5 with k parts. See A008284 and the Franklin T. Adams-Watters comment above. (End)
From _Gus Wiseman_, Feb 10 2021: (Start)
Row n = 9 counts the following partitions:
  9  54  333  3222  22221  222111  2211111  21111111  111111111
     63  432  3321  32211  321111  3111111
     72  441  4221  33111  411111
     81  522  4311  42111
         531  5211  51111
         621  6111
         711
(End)
		

Crossrefs

Sum of antidiagonal entries T(n, k) with n+k=m equals A000041(m).
Alternating row sums are A081362.
Cf. A008284.
The version for factorizations is A316439.
The version for set partitions is A048993/A080510.
The version for strict partitions is A008289/A059607.
A047993 counts balanced partitions, ranked by A106529.
A063995/A105806 count partitions by Dyson rank.

Programs

  • Mathematica
    Flatten[Table[Length[IntegerPartitions[n, {k}]], {n, 0, 20}, {k, 0, n}]] (* Emanuele Munarini, Feb 24 2014 *)
  • Sage
    from sage.combinat.partition import number_of_partitions_length
    [[number_of_partitions_length(n, k) for k in (0..n)] for n in (0..10)] # Peter Luschny, Aug 01 2015

Formula

T(0, k) = 1, T(n, 0) = 0 (n>0), T(1, k) = 1 (k>0), T(n, 1) = 1 (n>0), T(n, k) = 0 for n < 0, T(n, k) = Sum[ T(n-k+i, k-i), i=0...k-1] Or, T(n, 1) = T(n, n) = 1, T(n, k) = 0 (k>n), T(n, k) = T(n-1, k-1) + T(n-k, k).
G.f. Product_{j=0..infinity} 1/(1-xy^j). Regarded as a triangular array, g.f. Product_{j=1..infinity} 1/(1-xy^j). - Franklin T. Adams-Watters, Dec 18 2006
O.g.f. of column No. k of the triangle a(n,k) is x^k/product(1-x^j,j=1..k), k>=0 (the undefined product for k=0 is put to 1). - Wolfdieter Lang, Dec 03 2012

Extensions

Corrected by Franklin T. Adams-Watters, Dec 18 2006

A064174 Number of partitions of n with nonnegative rank.

Original entry on oeis.org

1, 1, 2, 3, 4, 6, 9, 12, 17, 23, 31, 42, 56, 73, 96, 125, 161, 207, 265, 336, 426, 536, 672, 840, 1046, 1296, 1603, 1975, 2425, 2970, 3628, 4417, 5367, 6503, 7861, 9482, 11412, 13702, 16423, 19642, 23447, 27938, 33231, 39453, 46767, 55342, 65386, 77135
Offset: 1

Views

Author

Vladeta Jovovic, Sep 20 2001

Keywords

Comments

The rank of a partition is the largest summand minus the number of summands.
This sequence (up to proof) equals "partitions of 2n with even number of parts, ending in 1, with max descent of 1, where the number of odd parts in odd places equals the number of odd parts in even places. (See link and 2nd Mathematica line.) - Wouter Meeussen, Mar 29 2013
Number of partitions p of n such that max(max(p), number of parts of p) is a part of p. - Clark Kimberling, Feb 28 2014
From Gus Wiseman, Mar 09 2019: (Start)
Also the number of integer partitions of n with maximum part greater than or equal to the number of parts. The Heinz numbers of these integer partitions are given by A324521. For example, the a(1) = 1 through a(8) = 12 partitions are:
(1) (2) (3) (4) (5) (6) (7) (8)
(21) (22) (32) (33) (43) (44)
(31) (41) (42) (52) (53)
(311) (51) (61) (62)
(321) (322) (71)
(411) (331) (332)
(421) (422)
(511) (431)
(4111) (521)
(611)
(4211)
(5111)
Also the number of integer partitions of n with maximum part less than or equal to the number of parts. The Heinz numbers of these integer partitions are given by A324562. For example, the a(1) = 1 through a(8) = 12 partitions are:
(1) (11) (21) (22) (221) (222) (322) (332)
(111) (211) (311) (321) (331) (2222)
(1111) (2111) (2211) (2221) (3221)
(11111) (3111) (3211) (3311)
(21111) (4111) (4211)
(111111) (22111) (22211)
(31111) (32111)
(211111) (41111)
(1111111) (221111)
(311111)
(2111111)
(11111111)
(End)

Examples

			a(20) = p(19) - p(15) + p(8) = 490 - 176 + 22 = 336.
		

Crossrefs

Programs

  • Maple
    f:= n -> add((-1)^(k+1)*combinat:-numbpart(n-(3*k^2-k)/2),k=1..floor((1+sqrt(24*n+1))/6)):
    map(f, [$1..100]); # Robert Israel, Aug 03 2015
  • Mathematica
    Table[Count[IntegerPartitions[n], q_ /; First[q] >= Length[q]], {n, 16}]
    (* also *)
    Table[Count[IntegerPartitions[2n],q_/;Last[q]===1 && Max[q-PadRight[Rest[q],Length[q]]]<=1 && Count[First/@Partition[q,2],?OddQ]==Count[Last/@Partition[q,2],?OddQ]],{n,16}]
    (* also *)
    Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Max[Max[p], Length[p]]]], {n, 50}] (* Clark Kimberling, Feb 28 2014 *)
  • PARI
    {a(n) = my(A=1); A = sum(m=0,n,x^m*prod(k=1,m,(1-x^(m+k-1))/(1-x^k +x*O(x^n)))); polcoeff(A,n)}
    for(n=1,60,print1(a(n),", ")) \\ Paul D. Hanna, Aug 03 2015
    
  • PARI
    my(N=50, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2))) \\ Seiichi Manyama, May 21 2023

Formula

a(n) = (A000041(n) + A047993(n))/2.
a(n) = p(n-1) - p(n-5) + p(n-12) - ... -(-1)^k*p(n-(3*k^2-k)/2) + ..., where p() is A000041(). - Vladeta Jovovic, Aug 04 2004
G.f.: Sum_{n>=1} x^n * Product_{k=1..n} (1 - x^(n+k-1))/(1 - x^k). - Paul D. Hanna, Aug 03 2015
A064173(n) + a(n) = A000041(n). - R. J. Mathar, Feb 22 2023
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2). - Seiichi Manyama, May 21 2023

Extensions

Mathematica programs modified by Clark Kimberling, Feb 12 2014

A064173 Number of partitions of n with positive rank.

Original entry on oeis.org

0, 1, 1, 2, 3, 5, 6, 10, 13, 19, 25, 35, 45, 62, 80, 106, 136, 178, 225, 291, 366, 466, 583, 735, 912, 1140, 1407, 1743, 2140, 2634, 3214, 3932, 4776, 5807, 7022, 8495, 10225, 12313, 14762, 17696, 21136, 25236, 30030, 35722, 42367, 50216, 59368, 70138, 82665
Offset: 1

Views

Author

Vladeta Jovovic, Sep 19 2001

Keywords

Comments

The rank of a partition is the largest summand minus the number of summands.
Also number of partitions of n with negative rank. - Omar E. Pol, Mar 05 2012
Column 1 of A208478. - Omar E. Pol, Mar 11 2012
Number of partitions p of n such that max(max(p), number of parts of p) is not a part of p. - Clark Kimberling, Feb 28 2014
The sequence enumerates the semigroup of partitions of positive rank for each number n. The semigroup is a subsemigroup of the monoid of partitions of nonnegative rank under the binary operation "*": Let A be the positive rank partition (a1,...,ak) where ak > k, and let B=(b1,...bj) with bj > j. Then let A*B be the partition (a1b1,...,a1bj,...,akb1,...,akbj), which has akbj > kj, thus having positive rank. For example, the partition (2,3,4) of 9 has rank 1, and its product with itself is (4,6,6,8,8,9,12,12,16) of 81, which has rank 7. A similar situation holds for partitions of negative rank--they are a subsemigroup of the monoid of nonpositive rank partitions. - Richard Locke Peterson, Jul 15 2018

Examples

			a(20) = p(18) - p(13) + p(5) = 385 - 101 + 7 = 291.
From _Gus Wiseman_, Feb 09 2021: (Start)
The a(2) = 1 through a(9) = 13 partitions of positive rank:
  (2)  (3)  (4)   (5)   (6)    (7)    (8)     (9)
            (31)  (32)  (33)   (43)   (44)    (54)
                  (41)  (42)   (52)   (53)    (63)
                        (51)   (61)   (62)    (72)
                        (411)  (421)  (71)    (81)
                               (511)  (422)   (432)
                                      (431)   (441)
                                      (521)   (522)
                                      (611)   (531)
                                      (5111)  (621)
                                              (711)
                                              (5211)
                                              (6111)
(End)
		

Crossrefs

Note: A-numbers of ranking sequences are in parentheses below.
The negative-rank version is also A064173 (A340788).
The case of odd positive rank is A101707 (A340604).
The case of even positive rank is A101708 (A340605).
These partitions are ranked by (A340787).
A063995/A105806 count partitions by rank.
A072233 counts partitions by sum and length.
A168659 counts partitions whose length is a multiple of the greatest part.
A200750 counts partitions whose length and greatest part are coprime.
- Rank -
A064174 counts partitions of nonnegative/nonpositive rank (A324562/A324521).
A101198 counts partitions of rank 1 (A325233).
A257541 gives the rank of the partition with Heinz number n.
A340601 counts partitions of even rank (A340602).
A340692 counts partitions of odd rank (A340603).
- Balance -
A047993 counts balanced partitions (A106529).
A340599 counts alt-balanced factorizations.
A340653 counts balanced factorizations.

Programs

  • Maple
    A064173 := proc(n)
        a := 0 ;
        for p in combinat[partition](n) do
            r := max(op(p))-nops(p) ;
            if r > 0 then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc:
    seq(A064173(n),n=0..40) ;# Emeric Deutsch, Dec 11 2004
  • Mathematica
    Table[Count[IntegerPartitions[n], q_ /; First[q] > Length[q]], {n, 24}] (* Clark Kimberling, Feb 12 2014 *)
    Table[Count[IntegerPartitions[n], p_ /; ! MemberQ[p, Max[Max[p], Length[p]]]], {n, 20}] (* Clark Kimberling, Feb 28 2014 *)
    P = PartitionsP;
    a[n_] := (P[n] - Sum[-(-1)^k (P[n - (3k^2 - k)/2] - P[n - (3k^2 + k)/2]), {k, 1, Floor[(1 + Sqrt[1 + 24n])/6]}])/2;
    a /@ Range[48] (* Jean-François Alcover, Jan 11 2020, after Wouter Meeussen in A047993 *)
  • PARI
    my(N=66, x='x+O('x^N)); concat(0, Vec(sum(k=1, N, x^k*prod(j=1, k, (1-x^(k+j-2))/(1-x^j))))) \\ Seiichi Manyama, Jan 25 2022

Formula

a(n) = (A000041(n) - A047993(n))/2.
a(n) = p(n-2) - p(n-7) + p(n-15) - ... - (-1)^k*p(n-(3*k^2+k)/2) + ..., where p() is A000041(). - Vladeta Jovovic, Aug 04 2004
G.f.: Product_{k>=1} (1/(1-q^k)) * Sum_{k>=1} ( (-1)^k * (-q^(3*k^2/2+k/2))) (conjectured). - Thomas Baruchel, May 12 2018
G.f.: Sum_{k>=1} x^k * Product_{j=1..k} (1-x^(k+j-2))/(1-x^j). - Seiichi Manyama, Jan 25 2022
a(n)+A064174(n) = A000041(n). - R. J. Mathar, Feb 22 2023

A101198 Number of partitions of n with rank 1 (the rank of a partition is the largest part minus the number of parts).

Original entry on oeis.org

0, 1, 0, 1, 1, 2, 1, 3, 3, 5, 5, 8, 8, 13, 14, 20, 23, 31, 35, 48, 55, 72, 84, 108, 126, 160, 187, 233, 275, 340, 398, 489, 574, 697, 819, 988, 1158, 1390, 1627, 1941, 2271, 2696, 3145, 3721, 4335, 5104, 5938, 6967, 8088, 9462, 10964, 12783
Offset: 1

Views

Author

Emeric Deutsch, Dec 12 2004

Keywords

Comments

Column k=1 in the triangle A063995.

Examples

			a(6)=2 because the 11 partitions 6,51,42,411,33,321,3111,222,2211,21111,111111 have ranks 5,3,2,1,1,0,-1,-1,-2,-3,-5, respectively.
		

References

  • George E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Mass., 1976.

Crossrefs

Programs

  • Maple
    with(combinat): for n from 1 to 35 do P:=partition(n): c:=0: for j from 1 to nops(P) do if P[j][nops(P[j])]-nops(P[j])=1 then c:=c+1 else c:=c fi od: a[n]:=c: od: seq(a[n],n=1..35);
  • Mathematica
    Table[Count[IntegerPartitions[n],?(Max[#]-Length[#]==1&)],{n,60}] (* _Harvey P. Dale, Nov 29 2014 *)

Formula

G.f. for the number of partitions of n with rank r is Sum((-1)^k*x^(r*k)*(x^((3*k^2+k)/2)-x^((3*k^2-k)/2)), k=1..infinity)/Product(1-x^k, k=1..infinity). - Vladeta Jovovic, Dec 20 2004
Also Sum(x^(2*n+r+1)*Product((1-x^(2*n+r+1-k))/(1-x^k),k=1..n),n=0..infinity). - Vladeta Jovovic, May 05 2008
a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (3 * 2^(9/2) * n^(3/2)). - Vaclav Kotesovec, May 26 2023

A192731 Euler transform is 1 / (q j(q)) where j is j-function (A000521).

Original entry on oeis.org

-744, 80256, -12288744, 2126816256, -392642298600, 75506620496256, -14935073808384744, 3015675387953504256, -618587635244888064744, 128473308888136855075200, -26951900214112779571200744
Offset: 1

Views

Author

Michael Somos, Jul 08 2011

Keywords

Examples

			From _Seiichi Manyama_, Jun 18 2017: (Start)
a(1) = (1/1) * A008683(1/1) * A288261(1) = (1/1) * (-744) = -744,
a(2) = (1/2) * (A008683(2/1) * A288261(1) + A008683(2/2) * A288261(2)) = (1/2) * (744 + 159768) = 80256. (End)
		

Crossrefs

Programs

  • PARI
    {a(n) = local(A, S); if( n<1, 0, A = 1 + x * O(x^n); S = x * ellj( x * A ); for( k = 1, n-1, S *= (A - x^k) ^ polcoeff( S, k)); - polcoeff( S, n))}

Formula

1 / (q j(q)) = Product_{k>0} (1 - x^k)^-a(k).
a(n) = 3*(A110163(n) - 8) = (1/n) * Sum_{d|n} A008683(n/d) * A288261(d). - Seiichi Manyama, Jun 18 2017
a(n) ~ (-1)^n * 3*exp(Pi*sqrt(3)*n) / n. - Vaclav Kotesovec, Mar 24 2018

A209616 Sum of positive Dyson's ranks of all partitions of n.

Original entry on oeis.org

0, 1, 2, 4, 7, 12, 18, 29, 42, 63, 89, 128, 176, 246, 333, 453, 603, 807, 1058, 1393, 1807, 2346, 3011, 3867, 4915, 6248, 7879, 9926, 12421, 15529, 19297, 23954, 29585, 36486, 44802, 54937, 67096, 81831, 99459, 120700, 146026, 176410, 212512, 255636, 306734
Offset: 1

Views

Author

Omar E. Pol, Mar 10 2012

Keywords

Comments

The Dyson's rank of a partition is the largest part minus the number of parts.

Examples

			For n = 5 we have:
--------------------------
Partitions        Dyson's
of 5               rank
--------------------------
5               5 - 1 =  4
4+1             4 - 2 =  2
3+2             3 - 2 =  1
3+1+1           3 - 3 =  0
2+2+1           2 - 3 = -1
2+1+1+1         2 - 4 = -2
1+1+1+1+1       1 - 5 = -4
--------------------------
The sum of positive Dyson's ranks of all partitions of 5 is 4+2+1 = 7 so a(5) = 7.
		

Crossrefs

Column 1 of triangle A208482.

Programs

  • Maple
    # Maple program based on Theorem 1 of Andrews-Chan-Kim:
    M:=101;
    qinf:=mul(1-q^i,i=1..M);
    qinf:=series(qinf,q,M);
    R1:=add((-1)^(n+1)*q^(n*(3*n+1)/2)/(1-q^n),n=1..M);
    R1:=series(R1/qinf,q,M);
    seriestolist(%); # N. J. A. Sloane, Sep 04 2012
  • Mathematica
    M = 101;
    qinf = Product[1-q^i, {i, 1, M}];
    qinf = Series[qinf, {q, 0, M}];
    R1 = Sum[(-1)^(n+1) q^(n(3n+1)/2)/(1-q^n), {n, 1, M}];
    R1 = Series[R1/qinf, {q, 0, M}];
    CoefficientList[R1, q] // Rest (* Jean-François Alcover, Aug 18 2018, translated from Maple *)
  • PARI
    my(N=50, x='x+O('x^N)); concat(0, Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k+1)/2)/(1-x^k)))) \\ Seiichi Manyama, May 21 2023

Formula

a(n) = A115995(n) - A195012(n). - Omar E. Pol, Apr 06 2012
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k+1)/2) / (1-x^k). - Seiichi Manyama, May 21 2023
a(n) ~ log(2) * exp(Pi*sqrt(2*n/3)) / (Pi*2^(3/2)*sqrt(n)). - Vaclav Kotesovec, Jul 06 2025

Extensions

More terms from Alois P. Heinz, Mar 10 2012

A340692 Number of integer partitions of n of odd rank.

Original entry on oeis.org

0, 0, 2, 0, 4, 2, 8, 4, 14, 12, 26, 22, 44, 44, 76, 78, 126, 138, 206, 228, 330, 378, 524, 602, 814, 950, 1252, 1466, 1900, 2238, 2854, 3362, 4236, 5006, 6232, 7356, 9078, 10720, 13118, 15470, 18800, 22152, 26744, 31456, 37772, 44368, 53002, 62134, 73894
Offset: 0

Views

Author

Gus Wiseman, Jan 29 2021

Keywords

Comments

The Dyson rank of a nonempty partition is its maximum part minus its length. The rank of an empty partition is undefined.

Examples

			The a(0) = 0 through a(9) = 12 partitions (empty columns indicated by dots):
  .  .  (2)   .  (4)     (32)   (6)       (52)     (8)         (54)
        (11)     (31)    (221)  (33)      (421)    (53)        (72)
                 (211)          (51)      (3211)   (71)        (432)
                 (1111)         (222)     (22111)  (422)       (441)
                                (411)              (431)       (621)
                                (3111)             (611)       (3222)
                                (21111)            (3221)      (3321)
                                (111111)           (3311)      (5211)
                                                   (5111)      (22221)
                                                   (22211)     (42111)
                                                   (41111)     (321111)
                                                   (311111)    (2211111)
                                                   (2111111)
                                                   (11111111)
		

Crossrefs

Note: A-numbers of Heinz-number sequences are in parentheses below.
The case of length/maximum instead of rank is A027193 (A026424/A244991).
The case of odd positive rank is A101707 is (A340604).
The strict case is A117193.
The even version is A340601 (A340602).
The Heinz numbers of these partitions are (A340603).
A072233 counts partitions by sum and length.
A168659 counts partitions whose length is divisible by maximum.
A200750 counts partitions whose length and maximum are relatively prime.
- Rank -
A047993 counts partitions of rank 0 (A106529).
A063995/A105806 count partitions by Dyson rank.
A064173 counts partitions of positive/negative rank (A340787/A340788).
A064174 counts partitions of nonpositive/nonnegative rank (A324521/A324562).
A101198 counts partitions of rank 1 (A325233).
A101708 counts partitions of even positive rank (A340605).
A257541 gives the rank of the partition with Heinz number n.
A324520 counts partitions with rank equal to least part (A324519).
- Odd -
A000009 counts partitions into odd parts (A066208).
A026804 counts partitions whose least part is odd.
A058695 counts partitions of odd numbers (A300063).
A067659 counts strict partitions of odd length (A030059).
A160786 counts odd-length partitions of odd numbers (A300272).
A339890 counts factorizations of odd length.
A340385 counts partitions of odd length and maximum (A340386).

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],OddQ[Max[#]-Length[#]]&]],{n,0,30}]

Formula

Having odd rank is preserved under conjugation, and self-conjugate partitions cannot have odd rank, so a(n) = 2*A101707(n) for n > 0.

A105806 Triangle of number of partitions of n with nonnegative Dyson rank r=0,1,...,n-1.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 2, 1, 1, 0, 1, 3, 1, 2, 1, 1, 0, 1, 2, 3, 2, 2, 1, 1, 0, 1, 4, 3, 3, 2, 2, 1, 1, 0, 1, 4, 5, 3, 4, 2, 2, 1, 1, 0, 1, 6, 5, 6, 3, 4, 2, 2, 1, 1, 0, 1, 7, 8, 6, 6, 4, 4, 2, 2, 1, 1, 0, 1, 11, 8, 9, 7, 6, 4, 4, 2, 2, 1, 1, 0, 1, 11, 13, 10, 10, 7, 7, 4, 4, 2, 2, 1, 1, 0, 1
Offset: 1

Views

Author

Wolfdieter Lang, Mar 11 2005

Keywords

Comments

The array with all ranks (including negative ones) is A063995.
a(n,-r)=a(n,r) for negative rank -r with r from 1,2,...,n-1 (due to conjugation of partitions of n; see the link).
Dyson's rank of a partition of n is the maximal part minus the number of parts, i.e. the number of columns minus the number of rows of the Ferrers diagram (see the link) of the partition.

Examples

			Triangle starts:
  1;
  0, 1;
  1, 0, 1;
  1, 1, 0, 1;
  1, 1, 1, 0, 1;
  1, 2, 1, 1, 0, 1; ...
Row 6, second entry is 2 because there are 2 partitions of n=6 with rank r=2-1=1, namely (3^2) and (1^2,4).
The table of p(n,m) = number of partitions of n with rank m, taken from Dyson (1969):
n\m -6 -5  -4  -3  -2  -1   0   1   2   3   4   5   6
-----------------------------------------------------
0   0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,
1   0,  0,  0,  0,  0,  0,  1,  0,  0,  0,  0,  0,  0,
2   0,  0,  0,  0,  0,  1,  0,  1,  0,  0,  0,  0,  0,
3   0,  0,  0,  0,  1,  0,  1,  0,  1,  0,  0,  0,  0,
4   0,  0,  0,  1,  0,  1,  1,  1,  0,  1,  0,  0,  0,
5   0,  0,  1,  0,  1,  1,  1,  1,  1,  0,  1,  0,  0,
6   0,  1,  0,  1,  1,  2,  1,  2,  1,  1,  0,  1,  0,
7   1,  0,  1,  1,  2,  1,  3,  1,  2,  1,  1,  0,  1,
...
The central triangle is A063995, the right-hand triangle is the present sequence. - _N. J. A. Sloane_, Jan 23 2020
		

Crossrefs

For the full triangle see A063995.
Columns for r=0..5 are given in A047993, A101198, A101199, A101200, A363213, A363214.
Row sums = A064174.

Formula

a(n, r)= number of partitions of n with rank r, with r from 0, 1, ..., n-1.
G.f. of column r: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(r*k) * ( x^(k*(3*k-1)/2) - x^(k*(3*k+1)/2) ). - Seiichi Manyama, May 21 2023

A325233 Heinz numbers of integer partitions with Dyson rank 1.

Original entry on oeis.org

3, 10, 15, 25, 28, 42, 63, 70, 88, 98, 105, 132, 147, 175, 198, 208, 220, 245, 297, 308, 312, 330, 343, 462, 468, 484, 495, 520, 544, 550, 693, 702, 726, 728, 770, 780, 816, 825, 1053, 1078, 1089, 1092, 1144, 1155, 1170, 1210, 1216, 1224, 1300, 1352, 1360
Offset: 1

Views

Author

Gus Wiseman, Apr 13 2019

Keywords

Comments

Numbers whose maximum prime index is one greater than their number of prime indices counted with multiplicity.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
     3: {2}
    10: {1,3}
    15: {2,3}
    25: {3,3}
    28: {1,1,4}
    42: {1,2,4}
    63: {2,2,4}
    70: {1,3,4}
    88: {1,1,1,5}
    98: {1,4,4}
   105: {2,3,4}
   132: {1,1,2,5}
   147: {2,4,4}
   175: {3,3,4}
   198: {1,2,2,5}
   208: {1,1,1,1,6}
   220: {1,1,3,5}
   245: {3,4,4}
   297: {2,2,2,5}
   308: {1,1,4,5}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1000],PrimePi[FactorInteger[#][[-1,1]]]-PrimeOmega[#]==1&]
Showing 1-10 of 27 results. Next