A064165 a(n) = tau( sigma_n(n) ), where tau is the number of divisors of n.
1, 2, 6, 8, 8, 24, 16, 4, 8, 72, 96, 256, 32, 64, 1728, 64, 12, 384, 48, 2048, 3456, 128, 512, 2304, 256, 384, 2048, 9216, 128, 69120, 384, 2048, 184320, 2304, 81920, 2048, 128, 256, 9216, 1024, 64, 138240, 384, 16384, 32768, 3072, 2560, 131072, 64, 4194304, 196608
Offset: 1
Keywords
Examples
a(6) = 24; The sum of the 6th powers of the divisors of 6 is 1^6 + 2^6 + 3^6 + 6^6 = 47450, which has 24 divisors. - _Wesley Ivan Hurt_, May 04 2021
Links
- Daniel Suteu, Table of n, a(n) for n = 1..120
Programs
-
Mathematica
Table[DivisorSigma[0,DivisorSigma[w,w]],{w,30}] (* Harvey P. Dale, Jul 08 2019 *)
-
PARI
a(n) = numdiv(sigma(n, n)); \\ Michel Marcus, May 05 2021
-
Python
from math import prod from collections import Counter from sympy import factorint def A064165(n): return prod(r+1 for q,r in sum((Counter(factorint((p**(n*(e+1))-1)//(p**n-1))) for p, e in factorint(n).items()),Counter()).items()) # Chai Wah Wu, Jan 28 2022
Extensions
More terms from Wesley Ivan Hurt, May 04 2021
Comments