A347718 a(n) = Sum of the divisors of sigma_n(n).
1, 6, 56, 448, 6264, 96348, 1559520, 16908804, 391945400, 20553536052, 706019328000, 20210523379200, 519285252355776, 21710734431216480, 1456143373228677120, 25536237889612326912, 1792353900753729655758, 52839150354952425838080, 4154723599066412190910560
Offset: 1
Keywords
Examples
a(3) = sigma(sigma_3(3)) = sigma(1^3+3^3) = sigma(28) = 1+2+4+7+14+28 = 56.
Links
- Daniel Suteu, Table of n, a(n) for n = 1..120 (first 42 terms from Chai Wah Wu)
- Index entries for sequences related to sigma(n)
Programs
-
Maple
a:= n-> (s-> s(s[n](n)))(numtheory[sigma]): seq(a(n), n=1..20); # Alois P. Heinz, Jan 28 2022
-
Mathematica
Table[DivisorSigma[1, DivisorSigma[n, n]], {n, 20}]
-
Python
from math import prod from collections import Counter from sympy import factorint def A347718(n): return prod((q**(r+1)-1)//(q-1) for q,r in sum((Counter(factorint((p**(n*(e+1))-1)//(p**n-1))) for p, e in factorint(n).items()),Counter()).items()) # Chai Wah Wu, Jan 28 2022
Formula
a(n) = sigma(sigma_n(n)).