cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064352 a(n) = (3*n)!/(2*n)!.

Original entry on oeis.org

1, 3, 30, 504, 11880, 360360, 13366080, 586051200, 29654190720, 1700755056000, 109027350432000, 7725366544896000, 599555620984320000, 50578512186237235200, 4608264443634948096000, 450974292794344230912000
Offset: 0

Views

Author

Karol A. Penson, Sep 19 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Array[(3 #)!/(2 #)! &, 16, 0] (* Michael De Vlieger, Jan 13 2018 *)
  • PARI
    { f3=f2=1; for (n=0, 100, if (n, f3*=3*n*(3*n - 1)*(3*n - 2); f2*=2*n*(2*n - 1)); write("b064352.txt", n, " ", f3/f2) ) } \\ Harry J. Smith, Sep 12 2009
    
  • Sage
    [falling_factorial(3*n, n) for n in (0..15)] # Peter Luschny, Jan 13 2018

Formula

Integral representation as n-th moment of a positive function on a positive half-axis: a(n) = Integral_{x>=0} (x^n*exp(-2*x/27)*(BesselK(1/3, 2*x/27) + BesselK(2/3, 2*x/27))*(sqrt(3)/(27*Pi))).
From Carleman's criterion Sum_{n>=1} a(n)^(-1/(2*n)) = infinity the above solution of the Stieltjes moment problem is unique. - Karol A. Penson, Jan 13 2018
a(n) = n! * [x^n] 1/(1 - x)^(2*n+1). - Ilya Gutkovskiy, Jan 23 2018
Sum_{n>=1} 1/a(n) = A248760. - Amiram Eldar, Nov 15 2020

Extensions

a(15) from Harry J. Smith, Sep 12 2009