cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A374848 Obverse convolution A000045**A000045; see Comments.

Original entry on oeis.org

0, 1, 2, 16, 162, 3600, 147456, 12320100, 2058386904, 701841817600, 488286500625000, 696425232679321600, 2038348954317776486400, 12259459134020160144810000, 151596002479762016373851690400, 3855806813438155578522841251840000
Offset: 0

Views

Author

Clark Kimberling, Jul 31 2024

Keywords

Comments

The obverse convolution of sequences
s = (s(0), s(1), ...) and t = (t(0), t(1), ...)
is introduced here as the sequence s**t given by
s**t(n) = (s(0)+t(n)) * (s(1)+t(n-1)) * ... * (s(n)+t(0)).
Swapping * and + in the representation s(0)*t(n) + s(1)*t(n-1) + ... + s(n)*t(0)
of ordinary convolution yields s**t.
If x is an indeterminate or real (or complex) variable, then for every sequence t of real (or complex) numbers, s**t is a sequence of polynomials p(n) in x, and the zeros of p(n) are the numbers -t(0), -t(1), ..., -t(n).
Following are abbreviations in the guide below for triples (s, t, s**t):
F = (0,1,1,2,3,5,...) = A000045, Fibonacci numbers
L = (2,1,3,4,7,11,...) = A000032, Lucas numbers
P = (2,3,5,7,11,...) = A000040, primes
T = (1,3,6,10,15,...) = A000217, triangular numbers
C = (1,2,6,20,70, ...) = A000984, central binomial coefficients
LW = (1,3,4,6,8,9,...) = A000201, lower Wythoff sequence
UW = (2,5,7,10,13,...) = A001950, upper Wythoff sequence
[ ] = floor
In the guide below, sequences s**t are identified with index numbers Axxxxxx; in some cases, s**t and Axxxxxx differ in one or two initial terms.
Table 1. s = A000012 = (1,1,1,1...) = (1);
t = A000012; 1 s**t = A000079; 2^(n+1)
t = A000027; n s**t = A000142; (n+1)!
t = A000040, P s**t = A054640
t = A000040, P (1/3) s**t = A374852
t = A000079, 2^n s**t = A028361
t = A000079, 2^n (1/3) s**t = A028362
t = A000045, F s**t = A082480
t = A000032, L s**t = A374890
t = A000201, LW s**t = A374860
t = A001950, UW s**t = A374864
t = A005408, 2*n+1 s**t = A000165, 2^n*n!
t = A016777, 3*n+1 s**t = A008544
t = A016789, 3*n+2 s**t = A032031
t = A000142, n! s**t = A217757
t = A000051, 2^n+1 s**t = A139486
t = A000225, 2^n-1 s**t = A006125
t = A032766, [3*n/2] s**t = A111394
t = A034472, 3^n+1 s**t = A153280
t = A024023, 3^n-1 s**t = A047656
t = A000217, T s**t = A128814
t = A000984, C s**t = A374891
t = A279019, n^2-n s**t = A130032
t = A004526, 1+[n/2] s**t = A010551
t = A002264, 1+[n/3] s**t = A264557
t = A002265, 1+[n/4] s**t = A264635
Sequences (c)**L, for c=2..4: A374656 to A374661
Sequences (c)**F, for c=2..6: A374662, A374662, A374982 to A374855
The obverse convolutions listed in Table 1 are, trivially, divisibility sequences. Likewise, if s = (-1,-1,-1,...) instead of s = (1,1,1,...), then s**t is a divisibility sequence for every choice of t; e.g. if s = (-1,-1,-1,...) and t = A279019, then s**t = A130031.
Table 2. s = A000027 = (0,1,2,3,4,5,...) = (n);
t = A000027, n s**t = A007778, n^(n+1)
t = A000290, n^2 s**t = A374881
t = A000040, P s**t = A374853
t = A000045, F s**t = A374857
t = A000032, L s**t = A374858
t = A000079, 2^n s**t = A374859
t = A000201, LW s**t = A374861
t = A005408, 2*n+1 s**t = A000407, (2*n+1)! / n!
t = A016777, 3*n+1 s**t = A113551
t = A016789, 3*n+2 s**t = A374866
t = A000142, n! s**t = A374871
t = A032766, [3*n/2] s**t = A374879
t = A000217, T s**t = A374892
t = A000984, C s**t = A374893
t = A038608, n*(-1)^n s**t = A374894
Table 3. s = A000290 = (0,1,4,9,16,...) = (n^2);
t = A000290, n^2 s**t = A323540
t = A002522, n^2+1 s**t = A374884
t = A000217, T s**t = A374885
t = A000578, n^3 s**t = A374886
t = A000079, 2^n s**t = A374887
t = A000225, 2^n-1 s**t = A374888
t = A005408, 2*n+1 s**t = A374889
t = A000045, F s**t = A374890
Table 4. s = t;
s = t = A000012, 1 s**s = A000079; 2^(n+1)
s = t = A000027, n s**s = A007778, n^(n+1)
s = t = A000290, n^2 s**s = A323540
s = t = A000045, F s**s = this sequence
s = t = A000032, L s**s = A374850
s = t = A000079, 2^n s**s = A369673
s = t = A000244, 3^n s**s = A369674
s = t = A000040, P s**s = A374851
s = t = A000201, LW s**s = A374862
s = t = A005408, 2*n+1 s**s = A062971
s = t = A016777, 3*n+1 s**s = A374877
s = t = A016789, 3*n+2 s**s = A374878
s = t = A032766, [3*n/2] s**s = A374880
s = t = A000217, T s**s = A375050
s = t = A005563, n^2-1 s**s = A375051
s = t = A279019, n^2-n s**s = A375056
s = t = A002398, n^2+n s**s = A375058
s = t = A002061, n^2+n+1 s**s = A375059
If n = 2*k+1, then s**s(n) is a square; specifically,
s**s(n) = ((s(0)+s(n))*(s(1)+s(n-1))*...*(s(k)+s(k+1)))^2.
If n = 2*k, then s**s(n) has the form 2*s(k)*m^2, where m is an integer.
Table 5. Others
s = A000201, LW t = A001950, UW s**t = A374863
s = A000045, F t = A000032, L s**t = A374865
s = A005843, 2*n t = A005408, 2*n+1 s**t = A085528, (2*n+1)^(n+1)
s = A016777, 3*n+1 t = A016789, 3*n+2 s**t = A091482
s = A005408, 2*n+1 t = A000045, F s**t = A374867
s = A005408, 2*n+1 t = A000032, L s**t = A374868
s = A005408, 2*n+1 t = A000079, 2^n s**t = A374869
s = A000027, n t = A000142, n! s**t = A374871
s = A005408, 2*n+1 t = A000142, n! s**t = A374872
s = A000079, 2^n t = A000142, n! s**t = A374874
s = A000142, n! t = A000045, F s**t = A374875
s = A000142, n! t = A000032, L s**t = A374876
s = A005408, 2*n+1 t = A016777, 3*n+1 s**t = A352601
s = A005408, 2*n+1 t = A016789, 3*n+2 s**t = A064352
Table 6. Arrays of coefficients of s(x)**t(x), where s(x) and t(x) are polynomials
s(x) t(x) s(x)**t(x)
n x A132393
n^2 x A269944
x+1 x+1 A038220
x+2 x+2 A038244
x x+3 A038220
nx x+1 A094638
1 x^2+x+1 A336996
n^2 x x+1 A375041
n^2 x 2x+1 A375042
n^2 x x+2 A375043
2^n x x+1 A375044
2^n 2x+1 A375045
2^n x+2 A375046
x+1 F(n) A375047
x+1 x+F(n) A375048
x+F(n) x+F(n) A375049

Examples

			a(0) = 0 + 0 = 0
a(1) = (0+1) * (1+0) = 1
a(2) = (0+1) * (1+1) * (1+0) = 2
a(3) = (0+2) * (1+1) * (1+1) * (2+0) = 16
As noted above, a(2*k+1) is a square for k>=0. The first 5 squares are 1, 16, 3600, 12320100, 701841817600, with corresponding square roots 1, 4, 60, 3510, 837760.
If n = 2*k, then s**s(n) has the form 2*F(k)*m^2, where m is an integer and F(k) is the k-th Fibonacci number; e.g., a(6) = 2*F(3)*(192)^2.
		

Crossrefs

Programs

  • Maple
    a:= n-> (F-> mul(F(n-j)+F(j), j=0..n))(combinat[fibonacci]):
    seq(a(n), n=0..15);  # Alois P. Heinz, Aug 02 2024
  • Mathematica
    s[n_] := Fibonacci[n]; t[n_] := Fibonacci[n];
    u[n_] := Product[s[k] + t[n - k], {k, 0, n}];
    Table[u[n], {n, 0, 20}]
  • PARI
    a(n)=prod(k=0, n, fibonacci(k) + fibonacci(n-k)) \\ Andrew Howroyd, Jul 31 2024

Formula

a(n) ~ c * phi^(3*n^2/4 + n) / 5^((n+1)/2), where c = QPochhammer(-1, 1/phi^2)^2/2 if n is even and c = phi^(1/4) * QPochhammer(-phi, 1/phi^2)^2 / (phi + 1)^2 if n is odd, and phi = A001622 is the golden ratio. - Vaclav Kotesovec, Aug 01 2024

A155856 Triangle T(n,k) = binomial(2*n-k, k)*(n-k)!, read by rows.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 10, 6, 1, 24, 42, 30, 10, 1, 120, 216, 168, 70, 15, 1, 720, 1320, 1080, 504, 140, 21, 1, 5040, 9360, 7920, 3960, 1260, 252, 28, 1, 40320, 75600, 65520, 34320, 11880, 2772, 420, 36, 1, 362880, 685440, 604800, 327600, 120120, 30888, 5544, 660, 45, 1
Offset: 0

Views

Author

Paul Barry, Jan 29 2009

Keywords

Comments

Row sums of B^{-1}*A155856*B^{-1} are A000166 with B=A007318.
Downward diagonals T(n+j, n) = j!*binomial(n+j, n) = j!*seq(j), where seq(j) are sequences A010965, A010967, ..., A011101, A017714, A017716, ..., A017764, for 6 <= j <= 50, respectively. - G. C. Greubel, Jun 04 2021

Examples

			Triangle begins:
     1;
     1,    1;
     2,    3,    1;
     6,   10,    6,    1;
    24,   42,   30,   10,    1;
   120,  216,  168,   70,   15,   1;
   720, 1320, 1080,  504,  140,  21,  1;
  5040, 9360, 7920, 3960, 1260, 252, 28, 1;
		

Crossrefs

Cf. A155857 (row sums), A155858 (diagonal sums).

Programs

  • Mathematica
    Table[Binomial[2n-k,k](n-k)!,{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Mar 24 2017 *)
  • Sage
    flatten([[factorial(n-k)*binomial(2*n-k, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 04 2021

Formula

T(n,k) = binomial(2*n-k, k)*(n-k)!.
Sum_{k=0..n} T(n, k) = A155857(n)
Sum_{k=0..floor(n/2)} T(n-k, k) = A155858(n) (diagonal sums).
G.f.: 1/(1-xy-x/(1-xy-x/(1-xy-2x/(1-xy-2x/(1-xy-3x/(1-.... (continued fraction).
From G. C. Greubel, Jun 04 2021: (Start)
T(n, 0) = A000142(n). T(n+1, n) = A000217(n+1).
T(n+1, 1) = A007680(n). T(n+2, n) = A034827(n+4).
T(n+2, 2) = A175925(n). T(n+3, n) = A253946(n).
T(2*n, n) = A064352(n) T(n+4, n) = 4!*A000581(n).
T(n+1, n) = A000217(n+1). T(n+5, n) = 5!*A001287(n). (End)

A254865 a(n) = Product_{k = 1+n-floor(n/3) .. n} k.

Original entry on oeis.org

1, 1, 3, 4, 5, 30, 42, 56, 504, 720, 990, 11880, 17160, 24024, 360360, 524160, 742560, 13366080, 19535040, 27907200, 586051200, 859541760, 1235591280, 29654190720, 43609104000, 62990928000, 1700755056000, 2506375872000, 3634245014400, 109027350432000, 160945136352000, 234102016512000, 7725366544896000, 11420107066368000
Offset: 1

Views

Author

Antti Karttunen, Feb 09 2015

Keywords

Comments

Informally: Take the upper third of natural numbers in range [1..n] and multiply them together.

Crossrefs

Leftmost column of A254864.
Trisection: A064352.

Programs

  • Maple
    seq(n!/(n-floor(n/3))!,n=1..50); # Robert Israel, Jul 15 2020
  • Mathematica
    Array[#!/(# - Floor[#/3])! &, 34] (* Michael De Vlieger, Jul 15 2020 *)
  • PARI
    a(n) = prod(k=1+n-n\3, n, k); \\ Michel Marcus, Jul 15 2020
  • Scheme
    (define (A254865 n) (mul A000027 (+ 1 (- n (floor->exact (/ n 3)))) n))
    (define (mul intfun lowlim uplim) (let multloop ((i lowlim) (res 1)) (cond ((> i uplim) res) (else (multloop (+ 1 i) (* res (intfun i)))))))
    (define (A254865 n) (A254864bi n 1)) ;; Alternatively, using code given in A254864.
    

Formula

a(n) = Product_{k = 1+n-floor(n/3) .. n} k.
Other identities. For all n >= 1:
a(3n) = A064352(n).
From Robert Israel, Jul 15 2020: (Start) a(n) = n!/(n-floor(n/3))!.
a(3*k) = 3*k*a(3*k-1).
a(3*k+1) = (3*k+1)*a(3*k)/(2*k+1).
a(3*k+2) = (3*k+2)*a(3*k+1)/(2*k+2).
E.g.f.: (cosh(x^(3/2))-1)*(1+1/x) + sinh(x^(3/2))/sqrt(x).
(End)

A384241 a(n) = Product_{k=0..n-1} (3*n-4*k).

Original entry on oeis.org

1, 3, 12, 45, 0, -3465, -60480, -626535, 0, 204417675, 6227020800, 104928949125, 0, -77849405258625, -3379030566912000, -78792721832199375, 0, 104312208642352585875, 5875458349746585600000, 174954117301479619228125, 0, -362526128354588965187045625, -25100240092118201519308800000
Offset: 0

Views

Author

Seiichi Manyama, May 22 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = prod(k=0, n-1, 3*n-4*k);
    
  • Sage
    def a(n): return 4^n*falling_factorial(3*n/4, n)

Formula

a(n) = 4^n * FallingFactorial(3*n/4,n).
a(n) = n! * [x^n] (1 + 4*x)^(3*n/4).
a(n) = 3 * (-1)^(n-1) * A383996(n) for n > 0.
a(4*n) = 0 for n > 0.

A383874 a(n) = (3*n+1)!*(3*n)!/((2*n)!*((n+1)!)^2).

Original entry on oeis.org

1, 18, 4200, 3175200, 5137292160, 14544244915200, 64008493310361600, 405192226643043840000, 3493057136053143859200000, 39378260464472988708249600000, 562659674639968187756457984000000, 9940535265182157971578474463232000000, 212816707229761791940688046273331200000000
Offset: 0

Views

Author

Karol A. Penson, May 22 2025

Keywords

Crossrefs

Programs

  • Mathematica
    A383874[n_] := (3*n+1)!*(3*n)!/((2*n)!*((n+1)!)^2);
    Array[A383874, 15, 0] (* Paolo Xausa, May 26 2025 *)
  • PARI
    a(n) = (3*n+1)!*(3*n)!/((2*n)!*((n+1)!)^2); \\ Michel Marcus, May 22 2025

Formula

O.g.f.: hypergeom([1/3, 2/3, 2/3, 1, 1, 4/3], [1/2, 2, 2], (729*x)/4).
E.g.f.: hypergeom([1/3, 2/3, 2/3, 1, 1, 4/3], [1/2, 2, 2, 1], (729*x)/4).
a(n) = Integral_{x>=0} x^n*W(x)*dx, n>=0, with W(x) = MeijerG([[],[-1/2,1,1]],[[0,-1/3,-1/3,1/3,-2/3],[]],4*x/729)/(81*Pi^(3/2)), where MeijerG is the Meijer G - function. Apparently W(x) cannot be represented by any other simpler functions. W(x) is a positive function on (0,oo), is singular at x = 0 and goes monotonically to zero as x -> oo. Thus a(n) is a positive definite sequence.
W(x) is the solution of the Stieltjes moment problem and it may be non-unique.
a(n) ~ 3^(6*n+2) * n^(2*n - 3/2) / (sqrt(Pi) * 2^(2*n+1) * exp(2*n)). - Vaclav Kotesovec, May 24 2025

A384261 a(n) = Product_{k=0..n-1} (2*n+k-1).

Original entry on oeis.org

1, 1, 12, 210, 5040, 154440, 5765760, 253955520, 12893126400, 741354768000, 47621141568000, 3379847863392000, 262662462526464000, 22183557976419840000, 2023140487449489408000, 198155371076302768128000, 20744817468539834621952000, 2311708772421640603275264000
Offset: 0

Views

Author

Seiichi Manyama, May 23 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = prod(k=0, n-1, 2*n+k-1);
    
  • Python
    from sympy import rf
    def a(n): return rf(2*n-1, n)
    
  • Sage
    def a(n): return rising_factorial(2*n-1, n)

Formula

a(n) = RisingFactorial(2*n-1,n).
a(n) = n! * [x^n] 1/(1 - x)^(2*n-1).
a(n) = n! * binomial(3*n-2,n).
D-finite with recurrence 2*(-2*n+3)*a(n) +3*(3*n-2)*(3*n-4)*a(n-1)=0. - R. J. Mathar, May 26 2025
Showing 1-6 of 6 results.