A064372 Additive function a(n) defined by the recursive formula a(1)=1 and a(p^k)=a(k) for any prime p.
1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 3, 1, 2, 2, 2, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 3, 2, 2, 2, 2, 1, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 3
Offset: 1
Examples
a(30) = a(5^1 * 3^1 * 2^1) = a(1) + a(1) + a(1) = 3.
Links
Programs
-
Haskell
a064372 1 = 1 a064372 n = sum $ map a064372 $ a124010_row n -- Reinhard Zumkeller, Aug 27 2011
-
Maple
a:= proc(n) option remember; `if`(n=1, 1, add(a(i[2]), i=ifactors(n)[2])) end: seq(a(n), n=1..120); # Alois P. Heinz, Aug 23 2020
-
Mathematica
a[1] = 1; a[n_] := a[n] = Plus @@ a /@ FactorInteger[n][[All, 2]]; Table[a[n], {n, 1, 105}] (* Jean-François Alcover, Sep 19 2012 *)
Comments