cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A176472 Smallest m for which A064380(m) - A000010(m) = n.

Original entry on oeis.org

2, 4, 9, 12, 22, 18, 38, 16, 93, 45, 62, 70, 44, 63, 36, 52, 64, 102, 48, 68, 84, 76, 90, 142, 146, 117, 81, 166, 174, 178, 126, 80, 150, 132, 116, 230, 124, 100, 156, 246, 266, 258, 254, 148, 112
Offset: 0

Views

Author

Vladimir Shevelev, Apr 18 2010

Keywords

Comments

My 1981 publication studies A064380 with the quite natural convention A064380(1)=1. So a(1) could alternatively be defined as 1. By the definitions, it is clear that A064380(m) >= A000010(m).
Theorem. For every n >= 0, the equation A064380(m) - A000010(m) = n has infinitely many solutions.

References

  • V. S. Abramovich (Shevelev), On an analog of the Euler function, Proceeding of the North-Caucasus Center of the Academy of Sciences of the USSR (Rostov na Donu), 2 (1981), 13-17.
  • Vladimir Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43.

Crossrefs

Programs

  • Maple
    A176472 := proc(n) local m; for m from 2 do if A064380(m) - numtheory[phi](m) = n then return m; end if; end do: end proc: # R. J. Mathar, Jun 16 2010
  • Mathematica
    infCoprimeQ[n1_, n2_] := Module[{g = GCD[n1, n2]}, If[g == 1, True, AllTrue[FactorInteger[g][[All, 1]], BitAnd @@ IntegerExponent[{n1, n2}, #] == 0&]]];
    A064380[n_] := Sum[Boole[infCoprimeQ[j, n]], {j, 1, n - 1}];
    a[n_] := a[n] = For[m = 2, True, m++, If[A064380[m] - EulerPhi[m] == n, Return[m]]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 05 2023, after Amiram Eldar in A064380 *)

Extensions

a(2), a(3), a(8) and a(15) corrected and sequence extended by R. J. Mathar, Jun 16 2010

A176509 Composite numbers m for which A064380(m) = A000010(m).

Original entry on oeis.org

8, 27, 125, 128, 343, 1331, 2187, 2197, 4913, 6859, 12167, 24389, 29791, 32768, 50653, 68921, 78125, 79507, 103823, 148877, 205379, 226981, 300763, 357911, 389017, 493039, 571787, 704969, 823543, 912673, 1030301, 1092727, 1225043, 1295029, 1442897, 2048383, 2248091
Offset: 1

Views

Author

Vladimir Shevelev, Apr 19 2010

Keywords

Comments

Theorem. A064380(m) = A000010(m) iff m has the form m=p^(2^k-1), k>=1, p a prime. Eliminating the primes (k=1), the terms of the sequence have this form for k>1. All terms of A030078 (k=2) and A092759 (k=3) and prime powers of A010803 (k=4) are in the sequence, for example.

Crossrefs

Programs

  • Mathematica
    seq[max_] := Module[{ps = Select[Range[Floor[Surd[max, 3]]], PrimeQ], e, k, s = {}}, Do[e = Floor[Log[ps[[i]], max]]; k = Floor[Log2[e + 1]]; s = Join[s, ps[[i]]^(2^Range[2, k] - 1)], {i, 1, Length[ps]}]; Sort[s]]; seq[3*10^6] (* Amiram Eldar, Mar 26 2023 *)
  • PARI
    is(n)=my(e=isprimepower(n));e>2 && 2^valuation(e+1,2)==e+1 \\ Charles R Greathouse IV, Feb 19 2013

Formula

a(n) ~ n^3 log^3 n. - Charles R Greathouse IV, Feb 19 2013
Sum_{n>=1} 1/a(n) = Sum_{k>=2} 1/P(2^k-1) = 0.183077059924063305405..., where P(s) is the prime zeta function. - Amiram Eldar, Jul 11 2024

Extensions

128 inserted, 1024 deleted, 2187 inserted, 32768 inserted, etc. - R. J. Mathar, Nov 21 2010
More terms from Amiram Eldar, Mar 26 2023

A185373 The numerator of the fraction |n^2/A049417(n)-A064380(n)|.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 4, 1, 5, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 7, 5, 1, 2, 1, 2, 9, 3, 1, 1, 1, 4, 11, 11, 25, 2, 1, 1, 9, 2, 1, 11, 1, 4, 3, 7, 1, 2, 1, 2, 1, 13, 1, 3, 1, 13, 49, 17, 1, 0, 1, 1, 49, 16, 25, 1, 1, 17, 19, 35, 1, 14, 1, 2
Offset: 2

Views

Author

Vladimir Shevelev, Feb 17 2011

Keywords

Comments

n^2/A049417(n) is a multiplicative function, whereas A064380 is not. This sequence here measures the (small) differences n^2/A049417(n)-A064380(n) = 1/3, 1/4, 1/5, 1/6, 0, 1/8, 4/15, 1/10, 5/9, 1/12, 1/5 ...

Crossrefs

Cf. A064380, A049417, A185383 (denominators)

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); isigma[1] = 1; isigma[n] := Times @@ (Flatten@(f @@@ FactorInteger[n]) + 1);
    infCoprimeQ[n1_, n2_] := Module[{g = GCD[n1, n2]}, If[g == 1, True, AllTrue[ FactorInteger[g][[;; , 1]], BitAnd @@ IntegerExponent[{n1, n2}, #] == 0 &]]];
    a[n_] := Abs[Numerator[n^2 / isigma[n] - Sum[Boole[infCoprimeQ[j, n]], {j, 1, n-1}]]]; Array[a, 100, 2] (* Amiram Eldar, Mar 20 2025 *)

A185383 a(n) is the denominator of the fraction |n^2/A049417(n)-A064380(n)|.

Original entry on oeis.org

3, 4, 5, 6, 1, 8, 15, 10, 9, 12, 5, 14, 6, 8, 17, 18, 5, 20, 3, 32, 9, 24, 5, 26, 21, 40, 5, 30, 2, 32, 51, 16, 27, 48, 25, 38, 15, 56, 9, 42, 8, 44, 15, 4, 18, 48, 17, 50, 39, 8, 35, 54, 10, 72, 15, 80, 45, 60, 1, 62, 24, 80, 85, 84, 4, 68, 45, 32, 36, 72, 25, 74, 57
Offset: 2

Views

Author

Vladimir Shevelev, Feb 17 2011

Keywords

Comments

If A185373(n)=0, then we accept a(n)=1.

Crossrefs

Formula

a(n)=n+1 iff n is in A050376.

Extensions

a(73) corrected by Amiram Eldar, Sep 18 2019

A185079 a(n) = A064380(n) * A049417(n).

Original entry on oeis.org

3, 8, 15, 24, 36, 48, 60, 80, 90, 120, 140, 168, 192, 216, 255, 288, 330, 360, 390, 448, 504, 528, 600, 624, 672, 720, 760, 840, 936, 960, 1020, 1056, 1134, 1200, 1300, 1368, 1440, 1512, 1620, 1680, 1632, 1848, 1920, 1980, 2088, 2208, 2312, 2400, 2496, 2592, 2730, 2808, 2880, 3024, 3240, 3200, 3330
Offset: 2

Views

Author

Vladimir Shevelev, Feb 18 2011

Keywords

Crossrefs

Formula

a(n) = n^2 + o(n^(1+eps)).

Extensions

Corrected and extended by T. D. Noe, Feb 18 2011

A186777 Solutions x of the equation A064380(x)-A000010(x)=1 in integers x>=2.

Original entry on oeis.org

4, 6, 10, 15, 35, 77, 91, 143, 187, 209, 221, 247, 299, 323, 391, 437, 493, 527, 551, 589, 667, 703, 713, 851, 899, 943, 989, 1073, 1147, 1189, 1247, 1271, 1333, 1363, 1457, 1517, 1537, 1591, 1643, 1739, 1763, 1829, 1891, 1927, 1961, 2021, 2173, 2183, 2257, 2279
Offset: 1

Views

Author

Vladimir Shevelev, Feb 26 2011

Keywords

Comments

The defining equation has infinitely many solutions.
Equals {4, 6, 10} UNION A082663. - Eric M. Schmidt, Oct 04 2013

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43.

Crossrefs

Extensions

More terms from Amiram Eldar, Sep 14 2019

A185078 Numbers k for which A064380(k) = k/2.

Original entry on oeis.org

2, 6, 8, 10, 60, 70, 128, 136, 9822, 18632, 32768, 32896, 36720, 69726, 73662, 73686, 73734, 85962, 86046, 87114, 87198, 87222, 87258, 87294, 87306, 87342, 87366, 87546, 87558, 88014, 88278, 88302, 88338, 88386, 127326, 128046, 128082, 128382, 128406, 128598, 128802
Offset: 1

Views

Author

Vladimir Shevelev, Feb 18 2011

Keywords

Comments

Note that, if there exist infinitely many infinitary perfect numbers (A007357), then, as k tends to infinity over such numbers, A064380(k)/k = 1/2 + o(k^(-1+eps)). We conjecture that here A064380(k)/k = 1/2 infinitely many times, and thus the sequence contains infinitely many infinitary perfect numbers.

Crossrefs

Extensions

a(7)-a(13) from Amiram Eldar, Sep 13 2019
a(14)-a(41) from Amiram Eldar, Mar 26 2023

A186778 Solutions n of the equation A064380(n)-A000010(n)=2 in integers n>=2.

Original entry on oeis.org

9, 14, 21, 24, 33, 40, 55, 65, 119, 133, 253, 319, 341, 377, 403, 481, 629, 697, 731, 779, 799, 817, 893, 1007, 1081, 1219, 1357, 1403, 1541, 1711, 1769, 1943, 2059, 2077, 2117, 2201, 2263, 2291, 2407, 2449, 2573, 2759, 2923, 3071, 3293, 3403, 3589, 3649, 3737
Offset: 1

Views

Author

Vladimir Shevelev, Feb 26 2011

Keywords

Comments

The defining equation has infinitely many solutions.

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43.

Crossrefs

Extensions

More terms from Amiram Eldar, Sep 14 2019

A186779 Solutions n of the equation A064380(n)-A000010(n)=3 in integers n>=2.

Original entry on oeis.org

12, 39, 56, 85, 88, 95, 104, 161, 407, 451, 473, 533, 559, 611, 901, 1003, 1037, 1121, 1139, 1159, 1273, 1349, 1387, 1633, 1679, 1817, 1909, 2047, 2581, 2813, 2929, 2987, 3007, 3103, 3131, 3161, 3193, 3277, 3317, 3379, 3503, 4181, 4699, 4847, 5069, 5143, 5207
Offset: 1

Views

Author

Vladimir Shevelev, Feb 26 2011

Keywords

Comments

The defining equation has infinitely many solutions.

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43.

Crossrefs

Extensions

More terms from Amiram Eldar, Sep 14 2019

A186780 Solutions n of equation A064380(n)-A000010(n)=4 in integers n>=2.

Original entry on oeis.org

22, 25, 26, 32, 51, 57, 115, 135, 136, 145, 189, 203, 217, 297, 517, 583, 689, 767, 793, 1207, 1241, 1343, 1411, 1501, 1577, 1691, 2231, 2323, 2369, 2461, 2507, 2599, 3683, 3799, 3937, 3973, 4031, 4061, 4247, 4309, 4619, 4681, 5513, 5587, 5809, 6031, 6179, 6401
Offset: 1

Views

Author

Vladimir Shevelev, Feb 26 2011

Keywords

Comments

The sequence is infinite.

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43.

Crossrefs

Extensions

More terms from Amiram Eldar, Sep 14 2019
Showing 1-10 of 27 results. Next