cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A177329 Number of factors in the representation of n! as a product of distinct terms of A050376.

Original entry on oeis.org

1, 2, 3, 4, 3, 4, 6, 6, 4, 5, 7, 8, 9, 10, 11, 12, 8, 9, 9, 11, 12, 13, 13, 14, 15, 16, 14, 15, 16, 17, 19, 21, 17, 16, 15, 16, 17, 18, 19, 20, 22, 23, 21, 21, 21, 22, 23, 22, 23, 25, 22, 23, 22, 24, 26, 28, 28, 29, 27, 28, 29, 30, 32, 34, 30, 31, 31, 28, 27, 28, 29, 30, 31, 33, 31, 31, 30
Offset: 2

Views

Author

Vladimir Shevelev, May 06 2010

Keywords

References

  • Vladimir S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 [Russian].

Crossrefs

Programs

  • Maple
    read("transforms") ; A064547 := proc(n) f := ifactors(n)[2] ; a := 0 ; for p in f do a := a+wt(op(2,p)) ; end do: a ; end proc:
    A177329 := proc(n) A064547(n!) ; end proc: seq(A177329(n),n=2..80) ; # R. J. Mathar, May 28 2010
  • Mathematica
    f[p_, e_] := DigitCount[e, 2, 1]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n!]; Array[a, 100, 2] (* Amiram Eldar, Aug 24 2024 *)
  • PARI
    a(n) = vecsum(apply(x -> hammingweight(x), factor(n!)[,2])); \\ Amiram Eldar, Aug 24 2024
  • Python
    from collections import Counter
    from sympy import factorint
    def A177329(n): return sum(map(int.bit_count,sum((Counter(factorint(i)) for i in range(2,n+1)),start=Counter()).values())) # Chai Wah Wu, Jul 18 2024
    

Formula

a(n) = Sum_{i} A000120(e_i), where n! = Product_{i} p_i^e_i is the prime factorization of n!.
a(n) = A064547(n!). - R. J. Mathar, May 28 2010

Extensions

a(20)=10 inserted by Vladimir Shevelev, May 08 2010
Terms from a(14) onwards replaced according to the formula - R. J. Mathar, May 28 2010

A176509 Composite numbers m for which A064380(m) = A000010(m).

Original entry on oeis.org

8, 27, 125, 128, 343, 1331, 2187, 2197, 4913, 6859, 12167, 24389, 29791, 32768, 50653, 68921, 78125, 79507, 103823, 148877, 205379, 226981, 300763, 357911, 389017, 493039, 571787, 704969, 823543, 912673, 1030301, 1092727, 1225043, 1295029, 1442897, 2048383, 2248091
Offset: 1

Views

Author

Vladimir Shevelev, Apr 19 2010

Keywords

Comments

Theorem. A064380(m) = A000010(m) iff m has the form m=p^(2^k-1), k>=1, p a prime. Eliminating the primes (k=1), the terms of the sequence have this form for k>1. All terms of A030078 (k=2) and A092759 (k=3) and prime powers of A010803 (k=4) are in the sequence, for example.

Crossrefs

Programs

  • Mathematica
    seq[max_] := Module[{ps = Select[Range[Floor[Surd[max, 3]]], PrimeQ], e, k, s = {}}, Do[e = Floor[Log[ps[[i]], max]]; k = Floor[Log2[e + 1]]; s = Join[s, ps[[i]]^(2^Range[2, k] - 1)], {i, 1, Length[ps]}]; Sort[s]]; seq[3*10^6] (* Amiram Eldar, Mar 26 2023 *)
  • PARI
    is(n)=my(e=isprimepower(n));e>2 && 2^valuation(e+1,2)==e+1 \\ Charles R Greathouse IV, Feb 19 2013

Formula

a(n) ~ n^3 log^3 n. - Charles R Greathouse IV, Feb 19 2013
Sum_{n>=1} 1/a(n) = Sum_{k>=2} 1/P(2^k-1) = 0.183077059924063305405..., where P(s) is the prime zeta function. - Amiram Eldar, Jul 11 2024

Extensions

128 inserted, 1024 deleted, 2187 inserted, 32768 inserted, etc. - R. J. Mathar, Nov 21 2010
More terms from Amiram Eldar, Mar 26 2023

A177333 Smallest factor in the factorization of n! over distinct terms of A050376.

Original entry on oeis.org

2, 2, 2, 2, 5, 5, 2, 2, 7, 7, 3, 3, 2, 2, 2, 2, 5, 5, 4, 3, 2, 2, 4, 4, 2, 2, 2, 2, 4, 4, 2, 2, 3, 3, 3, 3, 2, 2, 4, 4, 2, 2, 2, 2, 3, 3, 4, 4, 2, 2, 2, 2, 4, 4, 2, 2, 3, 3, 7, 7, 2, 2, 2, 2, 3, 3, 3, 4, 2, 2, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 2, 2, 4, 4, 5, 3, 2, 2, 4, 4, 2, 2, 2, 2, 3, 3, 2, 2, 4
Offset: 2

Views

Author

Vladimir Shevelev, May 06 2010

Keywords

Examples

			The factorization of 10! = 3628800 is 2^8*3^4*5^2*7^1, where 2^8 > 3^4 > 5^2 > 7, so a(10)=7 is the smallest of these 4 factors.
		

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 [Russian].

Crossrefs

Programs

  • Maple
    A177333 := proc(n) local a,p,pow2 ; a := n! ; for p in ifactors(n!)[2] do pow2 := convert( op(2,p),base,2) ; for j from 1 to nops(pow2) do if op(j,pow2) <> 0 then a := min(a,op(1,p)^(2^(j-1))) ; end if; end do: end do: return a ; end proc:
    seq(A177333(n),n=2..120) ; # R. J. Mathar, Jun 16 2010
  • Mathematica
    b[n_] :=2^(-1+Position[ Reverse@IntegerDigits[n, 2],?(#==1&)])//Flatten; a[n] := Module[{np = PrimePi[n]}, v=Table[0,{np}]; Do[p = Prime[k]; Do[v[[k]] += IntegerExponent[j, p], {j,2,n}],  {k,1,np}]; Min[(Prime/@Range[np])^(b/@v) // Flatten]]; Array[a, 105, 2] (* Amiram Eldar, Sep 17 2019 *)

Extensions

Corrected from a(10) on and extended beyond a(30) by R. J. Mathar, Jun 16 2010

A176525 Fermi-Dirac semiprimes: products of two distinct terms of A050376.

Original entry on oeis.org

6, 8, 10, 12, 14, 15, 18, 20, 21, 22, 26, 27, 28, 32, 33, 34, 35, 36, 38, 39, 44, 45, 46, 48, 50, 51, 52, 55, 57, 58, 62, 63, 64, 65, 68, 69, 74, 75, 76, 77, 80, 82, 85, 86, 87, 91, 92, 93, 94, 95, 98, 99, 100, 106, 111, 112, 115, 116, 117, 118, 119, 122
Offset: 1

Views

Author

Vladimir Shevelev, Apr 19 2010, Apr 20 2010

Keywords

Comments

The sequence essentially differs from A000379 beginning with a(108)=212 (not 210). All squarefree terms of A001358 are in the sequence.

References

  • Vladimir S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences, Vol. 4 (1996), pp. 28-43 [Russian].

Crossrefs

Programs

  • Mathematica
    Select[Range[120], Plus @@ DigitCount[Last /@ FactorInteger[#], 2, 1] == 2 &] (* Amiram Eldar, Nov 27 2020 *)

Formula

If a(n)=u*v, uA050376 "Fermi-Dirac primes", then A064380(a(n))=a(n)-u-v+1+Sum{i>=1}(-1)^(i-1)*floor(v/u^i).

Extensions

Effectively duplicate content (due to duplicate referenced sequence) removed by Peter Munn, Dec 19 2019

A186777 Solutions x of the equation A064380(x)-A000010(x)=1 in integers x>=2.

Original entry on oeis.org

4, 6, 10, 15, 35, 77, 91, 143, 187, 209, 221, 247, 299, 323, 391, 437, 493, 527, 551, 589, 667, 703, 713, 851, 899, 943, 989, 1073, 1147, 1189, 1247, 1271, 1333, 1363, 1457, 1517, 1537, 1591, 1643, 1739, 1763, 1829, 1891, 1927, 1961, 2021, 2173, 2183, 2257, 2279
Offset: 1

Views

Author

Vladimir Shevelev, Feb 26 2011

Keywords

Comments

The defining equation has infinitely many solutions.
Equals {4, 6, 10} UNION A082663. - Eric M. Schmidt, Oct 04 2013

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43.

Crossrefs

Extensions

More terms from Amiram Eldar, Sep 14 2019

A186778 Solutions n of the equation A064380(n)-A000010(n)=2 in integers n>=2.

Original entry on oeis.org

9, 14, 21, 24, 33, 40, 55, 65, 119, 133, 253, 319, 341, 377, 403, 481, 629, 697, 731, 779, 799, 817, 893, 1007, 1081, 1219, 1357, 1403, 1541, 1711, 1769, 1943, 2059, 2077, 2117, 2201, 2263, 2291, 2407, 2449, 2573, 2759, 2923, 3071, 3293, 3403, 3589, 3649, 3737
Offset: 1

Views

Author

Vladimir Shevelev, Feb 26 2011

Keywords

Comments

The defining equation has infinitely many solutions.

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43.

Crossrefs

Extensions

More terms from Amiram Eldar, Sep 14 2019

A186779 Solutions n of the equation A064380(n)-A000010(n)=3 in integers n>=2.

Original entry on oeis.org

12, 39, 56, 85, 88, 95, 104, 161, 407, 451, 473, 533, 559, 611, 901, 1003, 1037, 1121, 1139, 1159, 1273, 1349, 1387, 1633, 1679, 1817, 1909, 2047, 2581, 2813, 2929, 2987, 3007, 3103, 3131, 3161, 3193, 3277, 3317, 3379, 3503, 4181, 4699, 4847, 5069, 5143, 5207
Offset: 1

Views

Author

Vladimir Shevelev, Feb 26 2011

Keywords

Comments

The defining equation has infinitely many solutions.

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43.

Crossrefs

Extensions

More terms from Amiram Eldar, Sep 14 2019

A186780 Solutions n of equation A064380(n)-A000010(n)=4 in integers n>=2.

Original entry on oeis.org

22, 25, 26, 32, 51, 57, 115, 135, 136, 145, 189, 203, 217, 297, 517, 583, 689, 767, 793, 1207, 1241, 1343, 1411, 1501, 1577, 1691, 2231, 2323, 2369, 2461, 2507, 2599, 3683, 3799, 3937, 3973, 4031, 4061, 4247, 4309, 4619, 4681, 5513, 5587, 5809, 6031, 6179, 6401
Offset: 1

Views

Author

Vladimir Shevelev, Feb 26 2011

Keywords

Comments

The sequence is infinite.

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43.

Crossrefs

Extensions

More terms from Amiram Eldar, Sep 14 2019

A186781 Integer solutions x to the equation A064380(x)-A000010(x)=5.

Original entry on oeis.org

18, 20, 30, 34, 42, 69, 152, 155, 259, 287, 351, 459, 513, 649, 671, 871, 923, 949, 1513, 1649, 1717, 1843, 1919, 1957, 2033, 2071, 2147, 2921, 3013, 3151, 4321, 4379, 4553, 4727, 4843, 4867, 5017, 5053, 5177, 5363, 5549, 5611, 7067, 7141, 7289, 7363, 7807, 8651
Offset: 1

Views

Author

Vladimir Shevelev, Feb 26 2011

Keywords

Comments

The defining equation has infinitely many solutions, see A176472.

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43.

Crossrefs

Extensions

More terms from Amiram Eldar, Sep 14 2019
Showing 1-9 of 9 results.