A374673 a(n) is the start of the least run of exactly n consecutive positive numbers with an equal value of A177329, or -1 if no such run exists.
2, 8, 44, 83, 4475, 75093, 164903, 59480, 1342805
Offset: 1
Examples
n | a(n) | A177329(k), k = a(n), a(n)+1, ..., a(n)+n-1 --|--------|------------------------------------------------ 1 | 2 | A177329(2) = 1 2 | 8 | A177329(8) = A177329(9) = 6 3 | 44 | A177329(44) = A177329(45) = A177329(46) = 21 4 | 83 | A177329(83) = ... = A177329(86) = 35 5 | 4475 | A177329(4475) = ... A177329(4479) = 923 6 | 75093 | A177329(75093) = ... = A177329(75098) = 10857 7 | 164903 | A177329(164903) = ... = A177329(164909) = 22038 8 | 59480 | A177329(59480) = ... = A177329(59487) = 8814
Programs
-
Mathematica
s[n_] := Module[{e = FactorInteger[n!][[;; , 2]]}, Sum[DigitCount[e[[k]], 2, 1], {k, 1, Length[e]}]]; seq[len_] := Module[{v = Table[0, {len}], w = {0}, c = 0, k = 3, m, s1}, While[c < len, s1 = s[k]; m = Length[w]; If[s1 == w[[m]], AppendTo[w, s1], If[m <= len && v[[m]] == 0, v[[m]] = k-m; c++]; w = {s1}]; k++]; v]; seq[5]
-
PARI
s(n) = {my(e = factor(n!)[, 2]); sum(k=1, #e, hammingweight(e[k]));} lista(len) = {my(v = vector(len), w = [0], c = 0, k = 3, m, s1); while(c < len, s1 = s(k); m = #w; if(s1 == w[m], w = concat(w, s1), if(m < = len && v[m] == 0, v[m] = k-m; c++); w = [s1]); k++); v;}
-
Python
from itertools import count from collections import Counter from sympy import factorint def A374673(n): if n==1: return 2 c, a, l = Counter(), 0, 0 for m in count(2): c += Counter(factorint(m)) b = sum(map(int.bit_count,c.values())) if b==a: l += 1 else: if l==n-1: return m-n l = 0 a = b # Chai Wah Wu, Jul 18 2024
Extensions
a(9) from Chai Wah Wu, Jul 18 2024
Comments