cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A374673 a(n) is the start of the least run of exactly n consecutive positive numbers with an equal value of A177329, or -1 if no such run exists.

Original entry on oeis.org

2, 8, 44, 83, 4475, 75093, 164903, 59480, 1342805
Offset: 1

Views

Author

Amiram Eldar, Jul 16 2024

Keywords

Comments

For n > 1, a(n)! is the start of the least run of successive factorials of positive numbers (i.e., ignoring 0!) with an equal number of infinitary divisors (A037445).
a(9) > 320000, if it exists.

Examples

			  n |   a(n) | A177329(k), k = a(n), a(n)+1, ..., a(n)+n-1
  --|--------|------------------------------------------------
  1 |      2 | A177329(2) = 1
  2 |      8 | A177329(8) = A177329(9) = 6
  3 |     44 | A177329(44) = A177329(45) = A177329(46) = 21
  4 |     83 | A177329(83) = ... = A177329(86) = 35
  5 |   4475 | A177329(4475) = ... A177329(4479) = 923
  6 |  75093 | A177329(75093) = ... = A177329(75098) = 10857
  7 | 164903 | A177329(164903) = ... = A177329(164909) = 22038
  8 |  59480 | A177329(59480) = ... = A177329(59487) = 8814
		

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{e = FactorInteger[n!][[;; , 2]]}, Sum[DigitCount[e[[k]], 2, 1], {k, 1, Length[e]}]]; seq[len_] := Module[{v = Table[0, {len}], w = {0}, c = 0, k = 3, m, s1}, While[c < len, s1 = s[k]; m = Length[w]; If[s1 == w[[m]], AppendTo[w, s1], If[m <= len && v[[m]] == 0, v[[m]] = k-m; c++]; w = {s1}]; k++]; v]; seq[5]
  • PARI
    s(n) = {my(e = factor(n!)[, 2]); sum(k=1, #e, hammingweight(e[k]));}
    lista(len) = {my(v = vector(len), w = [0], c = 0, k = 3, m, s1); while(c < len, s1 = s(k); m = #w; if(s1 == w[m], w = concat(w, s1), if(m < = len && v[m] == 0, v[m] = k-m; c++); w = [s1]); k++); v;}
    
  • Python
    from itertools import count
    from collections import Counter
    from sympy import factorint
    def A374673(n):
        if n==1: return 2
        c, a, l = Counter(), 0, 0
        for m in count(2):
            c += Counter(factorint(m))
            b = sum(map(int.bit_count,c.values()))
            if b==a:
                l += 1
            else:
                if l==n-1:
                    return m-n
                l = 0
            a = b # Chai Wah Wu, Jul 18 2024

Extensions

a(9) from Chai Wah Wu, Jul 18 2024

A374674 a(n) is the start of the least run of exactly n consecutive positive numbers with strictly decreasing values of A177329, or -1 if no such run exists.

Original entry on oeis.org

2, 5, 68, 33, 709, 2313, 13251, 17961, 231881, 525323, 4172904, 7163595
Offset: 1

Views

Author

Amiram Eldar, Jul 16 2024

Keywords

Comments

For n > 1, a(n)! is the start the least run of successive factorials with strictly decreasing number of infinitary divisors (A037445).
a(9) > 170000, if it exists.

Examples

			  n |  a(n) | A177329(k), k = a(n), a(n)+1, ..., a(n)+n-1
  --|-------|------------------------------------------------------
  1 |     2 | 1
  2 |     5 | 4 > 3
  3 |    68 | 31 > 28 > 27
  4 |    33 | 21 > 17 > 16 > 15
  5 |   709 | 199 > 197 > 195 > 193 > 190
  6 |  2313 | 528 > 523 > 519 > 518 > 513 > 508
  7 | 13251 | 2355 > 2354 > 2353 > 2351 > 2350 > 2345 > 2343
  8 | 17961 | 3060 > 3056 > 3051 > 3049 > 3048 > 3047 > 3044 > 3041
		

Crossrefs

Programs

  • Mathematica
    s[n_] := Module[{e = FactorInteger[n!][[;; , 2]]}, Sum[DigitCount[e[[k]], 2, 1], {k, 1, Length[e]}]]; seq[len_] := Module[{v = Table[0, {len}], w = {s[2]}, c = 0, k = 3, m, s1}, While[c < len, s1 = s[k]; m = Length[w]; If[s1 < w[[m]], AppendTo[w, s1], If[m <= len && v[[m]] == 0, v[[m]] = k-m; c++]; w = {s1}]; k++]; v]; seq[5]
  • PARI
    s(n) = {my(e = factor(n!)[, 2]); sum(k=1, #e, hammingweight(e[k]));}
    lista(len) = {my(v = vector(len), w = [s(2)], c = 0, k = 3, m, s1); while(c < len, s1 = s(k); m = #w; if(s1 < w[m], w = concat(w, s1), if(m < = len && v[m] == 0, v[m] = k-m; c++); w = [s1]); k++); v;}
    
  • Python
    from itertools import count
    from collections import Counter
    from sympy import factorint
    def A374674(n):
        if n==1: return 2
        c, a, l = Counter(), 0, 0
        for m in count(2):
            c += Counter(factorint(m))
            b = sum(map(int.bit_count,c.values()))
            if bChai Wah Wu, Jul 18 2024

Extensions

a(9)-a(12) from Chai Wah Wu, Jul 18 2024

A177333 Smallest factor in the factorization of n! over distinct terms of A050376.

Original entry on oeis.org

2, 2, 2, 2, 5, 5, 2, 2, 7, 7, 3, 3, 2, 2, 2, 2, 5, 5, 4, 3, 2, 2, 4, 4, 2, 2, 2, 2, 4, 4, 2, 2, 3, 3, 3, 3, 2, 2, 4, 4, 2, 2, 2, 2, 3, 3, 4, 4, 2, 2, 2, 2, 4, 4, 2, 2, 3, 3, 7, 7, 2, 2, 2, 2, 3, 3, 3, 4, 2, 2, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 3, 4, 2, 2, 4, 4, 5, 3, 2, 2, 4, 4, 2, 2, 2, 2, 3, 3, 2, 2, 4
Offset: 2

Views

Author

Vladimir Shevelev, May 06 2010

Keywords

Examples

			The factorization of 10! = 3628800 is 2^8*3^4*5^2*7^1, where 2^8 > 3^4 > 5^2 > 7, so a(10)=7 is the smallest of these 4 factors.
		

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 [Russian].

Crossrefs

Programs

  • Maple
    A177333 := proc(n) local a,p,pow2 ; a := n! ; for p in ifactors(n!)[2] do pow2 := convert( op(2,p),base,2) ; for j from 1 to nops(pow2) do if op(j,pow2) <> 0 then a := min(a,op(1,p)^(2^(j-1))) ; end if; end do: end do: return a ; end proc:
    seq(A177333(n),n=2..120) ; # R. J. Mathar, Jun 16 2010
  • Mathematica
    b[n_] :=2^(-1+Position[ Reverse@IntegerDigits[n, 2],?(#==1&)])//Flatten; a[n] := Module[{np = PrimePi[n]}, v=Table[0,{np}]; Do[p = Prime[k]; Do[v[[k]] += IntegerExponent[j, p], {j,2,n}],  {k,1,np}]; Min[(Prime/@Range[np])^(b/@v) // Flatten]]; Array[a, 105, 2] (* Amiram Eldar, Sep 17 2019 *)

Extensions

Corrected from a(10) on and extended beyond a(30) by R. J. Mathar, Jun 16 2010

A177334 Largest factor in the factorization of n! over distinct terms of A050376.

Original entry on oeis.org

2, 3, 4, 5, 16, 16, 16, 81, 256, 256, 256, 256, 256, 256, 256, 256, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 65536, 4294967296, 4294967296, 4294967296, 4294967296, 4294967296, 4294967296
Offset: 2

Views

Author

Vladimir Shevelev, May 06 2010

Keywords

Comments

Each number >=2 has a unique factorization over distinct terms of A050376.
This is obtained from the standard prime factor representation by splitting the exponents into a sum of powers of 2, and further factorization according to the nonzero term of this base-2 representation.
The largest factor of this representation of A000142(n) defines this sequence.

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 [Russian].

Crossrefs

Programs

  • Maple
    A177334 := proc(n) local a,p,pow2 ; a := 1 ; for p in ifactors(n!)[2] do pow2 := convert( op(2,p),base,2) ; for j from 1 to nops(pow2) do if op(j,pow2) <> 0 then a := max(a,op(1,p)^(2^(j-1))) ; end if; end do: end do: return a ; end proc:
    seq(A177334(n),n=2..60) ; # R. J. Mathar, Jun 16 2010
  • Mathematica
    b[n_] :=2^(-1+Position[ Reverse@IntegerDigits[n, 2],?(#==1&)])//Flatten; a[n] := Module[{np = PrimePi[n]}, v=Table[0,{np}]; Do[p = Prime[k]; Do[v[[k]] += IntegerExponent[j, p], {j,2,n}],  {k,1,np}]; Max[(Prime/@Range[np])^(b/@v) // Flatten]]; Array[a, 38, 2]  (* Amiram Eldar, Sep 17 2019 *)

Extensions

a(18) and a(19) corrected and sequence extended by R. J. Mathar, Jun 16 2010

A241139 Number of nonprimes in factorization of n! over distinct terms of A050376.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 6, 7, 7, 4, 4, 5, 5, 6, 6, 8, 9, 10, 10, 9, 9, 11, 11, 12, 12, 10, 9, 8, 8, 9, 10, 11, 11, 12, 12, 11, 12, 14, 14, 16, 15, 15, 15, 13, 13, 14, 14, 14, 14, 16, 16, 16, 16, 17, 19, 21, 21, 18, 18, 19, 16, 14, 14, 16, 16, 17
Offset: 2

Views

Author

Vladimir Shevelev, Apr 16 2014

Keywords

Examples

			Factorization of 4! over distinct terms of A050376 is 4! = 2*3*4. This factorization contains only one A050376-nonprime. So a(4)=1.
		

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 [Russian].

Crossrefs

Programs

  • Mathematica
    b[n_] := 2^(-1 + Position[Reverse@IntegerDigits[n, 2], ?(# == 1 &)]) // Flatten; a[n] := Module[{np = PrimePi[n]}, v = Table[0, {np}]; Do[p = Prime[k]; Do[v[[k]] += IntegerExponent[j, p], {j, 2, n}], {k, 1, np}]; Length[Select[(b /@ v) // Flatten, # > 1 &]]]; Array[a, 73, 2]  (* Amiram Eldar, Sep 17 2019 *)
  • PARI
    a(n)={my(f=factor(n!)[,2]); sum(i=1, #f~, hammingweight(f[i]>>1))} \\ Andrew Howroyd, Sep 17 2019

Formula

a(n) = A177329(n) - A055460(n).

Extensions

More terms from Peter J. C. Moses, Apr 17 2014

A374671 Positive numbers k such that k! and (k+1)! have an equal number of infinitary divisors.

Original entry on oeis.org

8, 19, 23, 44, 45, 57, 67, 76, 80, 83, 84, 85, 105, 107, 116, 120, 123, 140, 141, 146, 158, 161, 165, 174, 177, 187, 201, 208, 214, 225, 235, 239, 241, 243, 244, 246, 247, 263, 269, 272, 277, 284, 297, 309, 315, 321, 322, 325, 337, 339, 341, 342, 344, 360, 363
Offset: 1

Views

Author

Amiram Eldar, Jul 16 2024

Keywords

Comments

Positive numbers such that k! and (k+1)! have an equal number of Fermi-Dirac factors (A064547).
Positive numbers k such that A037445(k!) = A037445((k+1)!).
Positive numbers k such that A064547(k!) = A064547((k+1)!).
Positive numbers k such that A177329(k) = A177329(k+1).

Examples

			8 is a term since A037445(8!) = A037445(9!) = 64.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Module[{e = FactorInteger[n!][[;; , 2]]}, Sum[DigitCount[e[[k]], 2, 1], {k, 1, Length[e]}]]; Select[Range[2, 400], s[#] == s[# + 1] &]
  • PARI
    s(n) = {my(e = factor(n!)[, 2]); sum(k=1, #e, hammingweight(e[k]));}
    lista(kmax) = {my(s1 = s(1), s2); for(k = 2, kmax, s2 = s(k); if(s1 == s2, print1(k-1, ", ")); s1 = s2);}

A374672 Numbers k such that k! has more infinitary divisors than (k+1)!.

Original entry on oeis.org

5, 9, 17, 27, 33, 34, 35, 43, 48, 51, 53, 59, 65, 68, 69, 75, 77, 87, 91, 97, 98, 99, 103, 115, 119, 125, 129, 134, 135, 139, 147, 149, 151, 155, 163, 164, 171, 179, 183, 189, 194, 195, 197, 199, 203, 211, 215, 221, 227, 229, 230, 231, 237, 245, 249, 257, 259
Offset: 1

Views

Author

Amiram Eldar, Jul 16 2024

Keywords

Comments

Numbers k such that k! has more Fermi-Dirac factors (A064547) than (k+1)!.
Numbers k such that A037445(k!) > A037445((k+1)!).
Numbers k such that A064547(k!) > A064547((k+1)!).
Numbers k such that A177329(k) > A177329(k+1).

Examples

			5 is a term since A037445(5!) = 16 > A037445(6!) = 8.
		

Crossrefs

Programs

  • Mathematica
    s[n_] := s[n] = Module[{e = FactorInteger[n!][[;; , 2]]}, Sum[DigitCount[e[[k]], 2, 1], {k, 1, Length[e]}]]; Select[Range[2, 300], s[#] > s[# + 1] &]
  • PARI
    s(n) = {my(e = factor(n!)[, 2]); sum(k=1, #e, hammingweight(e[k]));}
    lista(kmax) = {my(s1 = s(1), s2); for(k = 2, kmax, s2 = s(k); if(s1 > s2, print1(k-1, ", ")); s1 = s2);}

A375635 The number of infinitary divisors of n!.

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 8, 16, 64, 64, 16, 32, 128, 256, 512, 1024, 2048, 4096, 256, 512, 512, 2048, 4096, 8192, 8192, 16384, 32768, 65536, 16384, 32768, 65536, 131072, 524288, 2097152, 131072, 65536, 32768, 65536, 131072, 262144, 524288, 1048576, 4194304, 8388608
Offset: 0

Views

Author

Amiram Eldar, Aug 22 2024

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := 2^DigitCount[e, 2, 1]; a[0] = a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 100, 0]
  • PARI
    a(n) = vecprod(apply(x -> 2^hammingweight(x), factor(n!)[,2]));
    
  • Python
    from collections import Counter
    from sympy import factorint
    def A375635(n): return 1<Chai Wah Wu, Aug 22 2024

Formula

a(n) = A037445(n!).
a(n) = 2^A177329(n).
A048656(n) <= a(n) <= A027423(n).

A241148 Number of factorials k!, 0<=k<=n, relatively prime to n! in Fermi-Dirac arithmetic.

Original entry on oeis.org

1, 2, 2, 2, 2, 2, 5, 5, 2, 2, 7, 7, 4, 4, 4, 2, 2, 2, 5, 5, 7, 4, 3, 3, 4, 4, 2, 2, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4, 3, 2, 4, 4, 3, 3, 2, 4, 5, 5, 4, 4, 2, 2, 2, 2, 6, 5, 2, 2, 3, 3, 7, 7, 3, 2, 2, 2, 3, 3, 3, 4, 3, 3, 4, 4, 2, 2, 2, 2, 6, 6, 4, 4, 2, 2, 2, 3, 4
Offset: 0

Views

Author

Vladimir Shevelev, Apr 16 2014

Keywords

Comments

Or, equivalently, the number of factorials k!, 0<=k<=n, for which k! and n! have no common A050376-factors in their factorizations over distinct terms of A050376.
Note that 1 (=0!=1!) corresponds to an empty subset of A050376.

Examples

			0!=1, 1!=1; further we have the following factorizations of k! over distinct terms of A050376 for k = 2,3,4,5,6:
2!=2, 3!=2*3, 4!=2*3*4, 5!=2*3*4*5, 6!=5*9*16. Thus, in the sense of the factorizations being considered, 6! is relatively prime to 0!,1!,2!,3!, and 4!. So a(6)=5.
		

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 (Russian; MR 2000f: 11097, pp. 3912-3913).

Crossrefs

Programs

  • Mathematica
    b[n_] := 2^(-1 + Position[Reverse@IntegerDigits[n, 2], ?(# == 1 &)]) // Flatten; infp[n] := Module[{np = PrimePi[n]}, v = Table[0, {np}]; Do[p = Prime[k]; Do[v[[k]] += IntegerExponent[j, p], {j, 2, n}], {k, 1, np}]; (Prime /@ Range[np])^(b /@ v) // Flatten]; infCoprimeQ[x_, y_] := Intersection[infp[x], infp[y]] == {}; a[n_] := Length @ Select[Range[0, n], infCoprimeQ[n, #] & ]; Array[a, 87, 0] (* Amiram Eldar, Sep 17 2019 *)

Extensions

More terms from Peter J. C. Moses, Apr 18 2014

A241289 Numbers n for which in the factorization of n! over distinct terms of A050376, the numbers of prime and nonprime terms are equal.

Original entry on oeis.org

7, 8, 9, 13, 18, 22, 37, 57, 71
Offset: 1

Views

Author

Vladimir Shevelev, Apr 18 2014

Keywords

Comments

a(10), if it exists, should be more than 5000. Is a(9)=71 the last term of sequence? - Peter J. C. Moses, Apr 19 2014
One can prove that a(9)=71 indeed is the last term of this sequence. - Vladimir Shevelev, Apr 19 2014.

Examples

			7 is in the sequence, since 7! in the considered factorization is 5*7*9*16, and here we have 2 primes and 2 nonprimes.
		

References

  • V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 [Russian].

Crossrefs

Extensions

Terms a(7) - a(9) from Peter J. C. Moses, Apr 19 2014
Showing 1-10 of 12 results. Next