A241927 Smallest k^2>=1 such that n-k^2 is semiprime p*q in Fermi-Dirac arithmetic (A176525) with additional requirement that, if n is a square, then p and q are of the same parity; or a(n)=2 if there is no such k^2.
2, 2, 2, 2, 2, 2, 1, 2, 1, 4, 1, 4, 1, 4, 1, 1, 9, 4, 1, 2, 1, 1, 1, 4, 4, 4, 1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 1, 4, 1, 1, 9, 4, 4, 9, 1, 1, 1, 4, 4, 4, 1, 1, 1, 4, 4, 1, 9, 1, 1, 9, 4, 4, 1, 1, 1, 1, 4, 4, 1, 1, 9, 4, 4, 9, 1, 1, 1, 1, 4, 4, 4, 25, 1, 4, 9, 1, 1, 1, 4, 4, 4, 1, 1, 1, 1, 1, 4, 4, 1, 1, 1, 4, 4, 4, 25
Offset: 1
Keywords
Examples
a(17)=9, since 9 is the smallest square such that 17-9 = 8 = 2*4 is a Fermi-Dirac semiprime.
References
- V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 (in Russian; MR 2000f: 11097, pp. 3912-3913).
Links
- Peter J. C. Moses, Table of n, a(n) for n = 1..10000
Comments