A064413 EKG sequence (or ECG sequence): a(1) = 1; a(2) = 2; for n > 2, a(n) = smallest number not already used which shares a factor with a(n-1).
1, 2, 4, 6, 3, 9, 12, 8, 10, 5, 15, 18, 14, 7, 21, 24, 16, 20, 22, 11, 33, 27, 30, 25, 35, 28, 26, 13, 39, 36, 32, 34, 17, 51, 42, 38, 19, 57, 45, 40, 44, 46, 23, 69, 48, 50, 52, 54, 56, 49, 63, 60, 55, 65, 70, 58, 29, 87, 66, 62, 31, 93, 72, 64, 68, 74, 37, 111, 75, 78, 76, 80, 82
Offset: 1
Examples
a(2) = 2, a(3) = 4 (gcd(2,4) = 2), a(4) = 6 (gcd(4,6) = 2), a(5) = 3 (gcd(6,3) = 3), a(6) = 9 (6 already used so next number which shares a factor is 9 since gcd(3,9) = 3).
References
- N. J. A. Sloane, Seven Staggering Sequences, in Homage to a Pied Puzzler, E. Pegg Jr., A. H. Schoen and T. Rodgers (editors), A. K. Peters, Wellesley, MA, 2009, pp. 93-110.
Links
- Zak Seidov, Table of n, a(n) for n = 1..10000
- David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669 [math.NT], 2015 and J. Int. Seq. 18 (2015) 15.6.7.
- Michael De Vlieger, Annotated plot of a(n) for n=1..120, showing prime p in red, 2p in blue, 3p in green, and other terms in gray.
- Michael De Vlieger, Partially annotated log-log scatterplot of a(n) for n=1..1024, showing prime p in red, 2p in blue, 3p in green, and other terms in gray. This plot exhibits three quasi-linear striations, the densest contains both 2p and all "gray" terms outside of the first dozen or so terms in the sequence.
- Michael De Vlieger, Table of n, a(n) for n = 1..262144.
- Michael De Vlieger, Mathematica version of Eric Rains' C Code, 2021.
- Diophante.fr, Les Récreations Mathématiques: E121. Une séquence cordiale.
- Gordon Hamilton, The EKG Sequence and the Tree of Numbers
- Gordon Hamilton, Untitled video related to previous video
- Piotr Hofman and Marcin Pilipczuk, A few new facts about the EKG sequence, J. Integer Seqs., 11 (2008), Article 08.4.2.
- James Keener, Mathematics of EKG [Refers to EKGs found in hospitals, included for comparison.]
- J. C. Lagarias, E. M. Rains and N. J. A. Sloane, The EKG sequence, arXiv:math/0204011 [math.NT], 2002.
- J. C. Lagarias, E. M. Rains and N. J. A. Sloane, The EKG Sequence, Exper. Math. 11 (2002), 437-446.
- J. C. Lagarias, E. M. Rains and N. J. A. Sloane, Plot of a(1) to a(100), with successive points joined by lines.
- J. C. Lagarias, E. M. Rains and N. J. A. Sloane, Terms 800 to 1000, with successive points joined by lines.
- J. C. Lagarias, E. M. Rains and N. J. A. Sloane, The first 1000 terms (represented by dots), successive points not joined.
- J. C. Lagarias, E. M. Rains and N. J. A. Sloane, The first 10000 terms (represented by dots), successive points not joined.
- J. C. Lagarias, E. M. Rains and N. J. A. Sloane, The sequence smoothed by replacing a(n)=p or 3p, p prime > 2, by a(n) = 2p.
- Ivars Peterson, The EKG Sequence
- E. M. Rains, C program
- N. J. A. Sloane, Seven Staggering Sequences.
- N. J. A. Sloane, Confessions of a Sequence Addict (AofA2017), slides of invited talk given at AofA 2017, Jun 19 2017, Princeton. Mentions this sequence.
- N. J. A. Sloane, Conant's Gasket, Recamán Variations, the Enots Wolley Sequence, and Stained Glass Windows, Experimental Math Seminar, Rutgers University, Sep 10 2020 (video of Zoom talk).
- N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences: An illustrated guide with many unsolved problems, Guest Lecture given in Doron Zeilberger's Experimental Mathematics Math640 Class, Rutgers University, Spring Semester, Apr 28 2022: Slides; Slides (an alternative source).
- N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 16.
- Eric Weisstein's World of Mathematics, EKG Sequence
- Index entries for sequences related to EKG sequence
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
A073734 gives GCD's of successive terms.
See A064664 for the inverse permutation. See A064665-A064668 for the first two infinite cycles of this permutation. A064669 gives cycle representatives.
See A064421 for sequence giving term at which n appears.
Cf. A064955 & A352194 (prime positions), A195376 (parity), A064957 (positions of odd terms), A064953 (positions of even terms), A064426 (first differences).
Cf. A240024 (nonprime version).
A256417 is a smoothed version.
See also A276127.
Programs
-
Haskell
import Data.List (delete, genericIndex) a064413 n = genericIndex a064413_list (n - 1) a064413_list = 1 : f 2 [2..] where ekg x zs = f zs where f (y:ys) = if gcd x y > 1 then y : ekg y (delete y zs) else f ys -- Reinhard Zumkeller, May 01 2014, Sep 17 2011
-
Maple
h := array(1..20000); a := array(1..10000); maxa := 300; maxn := 2*maxa; for n from 1 to maxn do h[n] := -1; od: a[1] := 2; h[2] := 1; c := 2; for n from 2 to maxa do for m from 2 to maxn do t1 := gcd(m,c); if t1 > 1 and h[m] = -1 then c := m; a[n] := c; h[c] := n; break; fi; od: od: ap := []: for n from 1 to maxa do ap := [op(ap),a[n]]; od: hp := []: for n from 2 to maxa do hp := [op(hp),h[n]]; od: convert(ap,list); convert(hp,list); # this is very crude! N:= 1000: # to get terms before the first term > N V:= Vector(N): A[1]:= 1: A[2]:= 2: V[2]:= 1: for n from 3 do S:= {seq(seq(k*p,k=1..N/p),p=numtheory:-factorset(A[n-1]))}; for s in sort(convert(S,list)) do if V[s] = 0 then A[n]:= s; break fi od; if V[s] = 1 then break fi; V[s]:= 1; od: seq(A[i],i=1..n-1); # Robert Israel, Jan 18 2016
-
Mathematica
maxN = 100; ekg = {1, 2}; unused = Range[3, maxN]; found = True; While[found, found = False; i = 0; While[ !found && i < Length[unused], i++; If[GCD[ekg[[-1]], unused[[i]]] > 1, found = True; AppendTo[ekg, unused[[i]]]; unused = Delete[unused, i]]]]; ekg (* Ayres *) ekGrapher[s_List] := Block[{m = s[[-1]], k = 3}, While[MemberQ[s, k] || GCD[m, k] == 1, k++ ]; Append[s, k]]; Nest[ekGrapher, {1, 2}, 71] (* Robert G. Wilson v, May 20 2009 *)
-
PARI
a1=1; a2=2; v=[1,2]; for(n=3,100,a3=if(n<0,0,t=1;while(vecmin(vector(length(v),i,abs(v[i]-t)))*(gcd(a2,t)-1)==0,t++);t);a2=a3;v=concat(v,a3);); a(n)=v[n]; /* Benoit Cloitre, Sep 23 2012 */
-
Python
from math import gcd A064413_list, l, s, b = [1,2], 2, 3, {} for _ in range(10**5): i = s while True: if not i in b and gcd(i, l) > 1: A064413_list.append(i) l, b[i] = i, True while s in b: b.pop(s) s += 1 break i += 1 # Chai Wah Wu, Dec 08 2014
Formula
a(n) = smallest number not already used such that gcd(a(n), a(n-1)) > 1.
In Lagarias-Rains-Sloane (2002), it is conjectured that almost all a(n) satisfy the asymptotic formula a(n) = n (1+ 1/(3 log n)) + o(n/log n) as n -> oo and that the exceptional terms when the sequence is a prime or 3 times a prime p produce the spikes in the sequence. See the paper for a more precise statement of the conjecture. - N. J. A. Sloane, Mar 07 2015
Extensions
More terms from Naohiro Nomoto, Sep 30 2001
Entry extensively revised by N. J. A. Sloane, Oct 10 2001
Comments