A064428 Number of partitions of n with nonnegative crank.
1, 0, 1, 2, 3, 4, 6, 8, 12, 16, 23, 30, 42, 54, 73, 94, 124, 158, 206, 260, 334, 420, 532, 664, 835, 1034, 1288, 1588, 1962, 2404, 2953, 3598, 4392, 5328, 6466, 7808, 9432, 11338, 13632, 16326, 19544, 23316, 27806, 33054, 39273, 46534, 55096, 65076, 76808
Offset: 0
Keywords
Examples
G.f. = 1 + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 12*x^8 + 16*x^9 + 23*x^10 + ... - _Michael Somos_, Jan 15 2018 From _Gus Wiseman_, May 21 2022: (Start) The a(0) = 1 through a(8) = 12 partitions with nonnegative crank: () . (2) (3) (4) (5) (6) (7) (8) (21) (22) (32) (33) (43) (44) (31) (41) (42) (52) (53) (221) (51) (61) (62) (222) (322) (71) (321) (331) (332) (421) (422) (2221) (431) (521) (2222) (3221) (3311) (End)
References
- B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 18 Entry 9 Corollary (i).
- G. E. Andrews, B. C. Berndt, Ramanujan's Lost Notebook Part I, Springer, see p. 169 Entry 6.7.1.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..10000
- George E. Andrews and David Newman, The Minimal Excludant in Integer Partitions, J. Int. Seq., Vol. 23 (2020), Article 20.2.3.
- Cody Armond and Oliver T. Dasbach, Rogers-Ramanujan type identities and the head and tail of the colored Jones polynomial, arXiv:1106.3948 [math.GT], 2011.
- Cristina Ballantine and Mircea Merca, Bisected theta series, least r-gaps in partitions, and polygonal numbers, arXiv:1710.05960 [math.CO], 2017.
- Rupam Barman and Ajit Singh, On Mex-related partition functions of Andrews and Newman, arXiv:2009.11602 [math.NT], 2020.
- Aubrey Blecher and Arnold Knopfmacher, Fixed points and matching points in partitions, Ramanujan J. 58 (2022), 23-41.
- Brian Hopkins, James A. Sellers, and Ae Ja Yee, Combinatorial Perspectives on the Crank and Mex Partition Statistics, arXiv:2108.09414 [math.CO], 2021.
- Mbavhalelo Mulokwe and Konstantinos Zoubos, Free fermions, neutrality and modular transformations, arXiv:2403.08531 [hep-th], 2024.
Crossrefs
Programs
-
Mathematica
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ (-1)^k x^(k (k + 1)/2) , {k, 0, (Sqrt[1 + 8 n] - 1)/2}] / QPochhammer[ x], {x, 0, n}]]; (* Michael Somos, Jan 15 2018 *) a[ n_] := If[ n < 0, 0, SeriesCoefficient[ Sum[ x^(k (k + 1)) / QPochhammer[ x, x, k]^2 , {k, 0, (Sqrt[1 + 4 n] - 1)/2}], {x, 0, n}]]; (* Michael Somos, Jan 15 2018 *) ck[y_]:=With[{w=Count[y,1]},If[w==0,If[y=={},0,Max@@y],Count[y,?(#>w&)]-w]];Table[Length[Select[IntegerPartitions[n],ck[#]>=0&]],{n,0,30}] (* _Gus Wiseman, Mar 30 2021 *) ici[q_]:=And@@Table[q[[i]]>q[[i+2]],{i,Length[q]-2}]; Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n], EvenQ@*Length],ici]],{n,0,15}] (* Gus Wiseman, Mar 30 2021 *)
-
PARI
{a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(1 + 8*n) -1)\2, (-1)^k * x^((k+k^2)/2)) / eta( x + x * O(x^n)), n))}; /* Michael Somos, Jul 28 2003 */
Formula
G.f.: (Sum_{k>=0} (-1)^k * x^(k(k+1)/2)) / (Product_{k>0} 1-x^k). - Michael Somos, Jul 28 2003
G.f.: Sum_{i>=0} x^(i*(i+1)) / (Product_{j=1..i} 1-x^j )^2. - Jon Perry, Jul 18 2004
a(n) ~ exp(Pi*sqrt(2*n/3)) / (8*n*sqrt(3)). - Vaclav Kotesovec, Sep 26 2016
G.f.: (Sum_{i>=0} x^i / (Product_{j=1..i} 1-x^j)^2 ) * (Product_{k>0} 1-x^k). - Li Han, May 23 2020
Comments