cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064476 For an integer k with prime factorization p_1*p_2*p_3* ... *p_m let k* = (p_1+1)*(p_2+1)*(p_3+1)* ... *(p_m+1) (A064478); sequence gives k such that k* is divisible by k.

Original entry on oeis.org

1, 6, 12, 36, 72, 144, 216, 432, 864, 1296, 1728, 2592, 5184, 7776, 10368, 15552, 20736, 31104, 46656, 62208, 93312, 124416, 186624, 248832, 279936, 373248, 559872, 746496, 1119744, 1492992, 1679616, 2239488, 2985984, 3359232, 4478976
Offset: 1

Views

Author

Jonathan Ayres (jonathan.ayres(AT)btinternet.com), Oct 06 2001

Keywords

Comments

Could be generalized by defining x* = (p_1+v)*(p_2+v) .. (p_m+v) where v is any integer.
It is not difficult to show that these numbers have the form 2^i*3^j with j <= i <= 2j. Hence 1 is the only odd term; also if k|k* then k*|k**. The values of i and j are given in A064514 and A064515. - Vladeta Jovovic and N. J. A. Sloane, Oct 07 2001

Examples

			12 is in the sequence because 12 = 2 * 2 * 3, so 12* is 3 * 3 * 4 = 36 and 36 is divisible by 12.
		

Crossrefs

Programs

  • ARIBAS
    function p2p3(stop:integer): array; var c,i,j,x: integer; b: boolean; ar: array; begin ar := alloc(array,stop); x := 0; c := 0; b := c < stop; while b do i := x; j := x - i; while b and i >= j do if i <= 2*j then ar[c] := (2^i * 3^j,i,j); inc(c); b := c < stop; end; dec(i); inc(j); end; inc(x); end; return sort(ar, comparefirst); end; function comparefirst(x,y: array): integer; begin return y[0] - x[0]; end; function a064476(maxarg: integer); var j: integer; ar: array; begin ar := p2p3(maxarg); for j := 0 to maxarg - 1 do write(ar[j][0]," "); end; end; a064476(35);
    
  • Haskell
    a064476 n = a064476_list !! (n-1)
    a064476_list = filter (\x -> a003959 x `mod` x == 0) [1..]
    -- Reinhard Zumkeller, Feb 28 2013
    
  • Mathematica
    diQ[n_]:=Divisible[Times@@(#+1&/@Flatten[Table[First[#],{Last[#]}]&/@ FactorInteger[n]]),n]; Select[Range[4500000],diQ] (* Harvey P. Dale, Aug 16 2011 *)
    With[{max = 5*10^6}, Select[Flatten[Table[2^i*3^j, {j, 0, Log[6, max]}, {i, j, 2*j}]] // Sort, # <= max &]] (* Amiram Eldar, Mar 29 2025 *)
  • PARI
    ns(n)= { local(f,p=1); f=factor(n); for(i=1, matsize(f)[1], p*=(1 + f[i, 1])^f[i, 2]); return(p) }
    { n=0; for (m=1, 10^9, if (ns(m)%m == 0, write("b064476.txt", n++, " ", m); if (n==100, break)) ) } \\ Harry J. Smith, Sep 15 2009
    
  • Python
    from sympy import integer_log
    def A064476(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(max(0,min((i<<1)+1,(x//3**i).bit_length())-i) for i in range(integer_log(x,3)[0]+1))
        return bisection(f,n,n) # Chai Wah Wu, Mar 26 2025

Formula

Sum_{n>=1} 1/a(n) = 72/55. - Amiram Eldar, Mar 29 2025

Extensions

More terms from Vladeta Jovovic, Oct 07 2001