A064476 For an integer k with prime factorization p_1*p_2*p_3* ... *p_m let k* = (p_1+1)*(p_2+1)*(p_3+1)* ... *(p_m+1) (A064478); sequence gives k such that k* is divisible by k.
1, 6, 12, 36, 72, 144, 216, 432, 864, 1296, 1728, 2592, 5184, 7776, 10368, 15552, 20736, 31104, 46656, 62208, 93312, 124416, 186624, 248832, 279936, 373248, 559872, 746496, 1119744, 1492992, 1679616, 2239488, 2985984, 3359232, 4478976
Offset: 1
Examples
12 is in the sequence because 12 = 2 * 2 * 3, so 12* is 3 * 3 * 4 = 36 and 36 is divisible by 12.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..50 from Harry J. Smith)
Programs
-
ARIBAS
function p2p3(stop:integer): array; var c,i,j,x: integer; b: boolean; ar: array; begin ar := alloc(array,stop); x := 0; c := 0; b := c < stop; while b do i := x; j := x - i; while b and i >= j do if i <= 2*j then ar[c] := (2^i * 3^j,i,j); inc(c); b := c < stop; end; dec(i); inc(j); end; inc(x); end; return sort(ar, comparefirst); end; function comparefirst(x,y: array): integer; begin return y[0] - x[0]; end; function a064476(maxarg: integer); var j: integer; ar: array; begin ar := p2p3(maxarg); for j := 0 to maxarg - 1 do write(ar[j][0]," "); end; end; a064476(35);
-
Haskell
a064476 n = a064476_list !! (n-1) a064476_list = filter (\x -> a003959 x `mod` x == 0) [1..] -- Reinhard Zumkeller, Feb 28 2013
-
Mathematica
diQ[n_]:=Divisible[Times@@(#+1&/@Flatten[Table[First[#],{Last[#]}]&/@ FactorInteger[n]]),n]; Select[Range[4500000],diQ] (* Harvey P. Dale, Aug 16 2011 *) With[{max = 5*10^6}, Select[Flatten[Table[2^i*3^j, {j, 0, Log[6, max]}, {i, j, 2*j}]] // Sort, # <= max &]] (* Amiram Eldar, Mar 29 2025 *)
-
PARI
ns(n)= { local(f,p=1); f=factor(n); for(i=1, matsize(f)[1], p*=(1 + f[i, 1])^f[i, 2]); return(p) } { n=0; for (m=1, 10^9, if (ns(m)%m == 0, write("b064476.txt", n++, " ", m); if (n==100, break)) ) } \\ Harry J. Smith, Sep 15 2009
-
Python
from sympy import integer_log def A064476(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(max(0,min((i<<1)+1,(x//3**i).bit_length())-i) for i in range(integer_log(x,3)[0]+1)) return bisection(f,n,n) # Chai Wah Wu, Mar 26 2025
Formula
Sum_{n>=1} 1/a(n) = 72/55. - Amiram Eldar, Mar 29 2025
Extensions
More terms from Vladeta Jovovic, Oct 07 2001
Comments