cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064478 If n = Product p(k)^e(k) then a(n) = Product (p(k)+1)^e(k), a(0) = 1, a(1)=2.

Original entry on oeis.org

1, 2, 3, 4, 9, 6, 12, 8, 27, 16, 18, 12, 36, 14, 24, 24, 81, 18, 48, 20, 54, 32, 36, 24, 108, 36, 42, 64, 72, 30, 72, 32, 243, 48, 54, 48, 144, 38, 60, 56, 162, 42, 96, 44, 108, 96, 72, 48, 324, 64, 108, 72, 126, 54, 192, 72, 216, 80, 90, 60, 216, 62, 96, 128, 729, 84, 144
Offset: 0

Views

Author

N. J. A. Sloane, Oct 06 2001

Keywords

Comments

a(0)=1 and a(1)=2 by convention (which makes a(n) not multiplicative).
The alternate convention a(0)=0 and a(1)=1 would have made a(n) completely multiplicative (cf. A003959 for completely multiplicative version.) - Daniel Forgues, Nov 17 2009

Crossrefs

Cf. A064476, A064479, A003958. Apart from initial terms, same as A003959.

Programs

  • Haskell
    a064478 n = if n <= 1 then n + 1 else a003959 n
    -- Reinhard Zumkeller, Feb 28 2013
    
  • Maple
    a:= n-> `if`(n<2, n+1, mul((i[1]+1)^i[2], i=ifactors(n)[2])):
    seq(a(n), n=0..80);  # Alois P. Heinz, Sep 13 2017
  • Mathematica
    a[0] = 1; a[1] = 2; a[n_] := (fi = FactorInteger[n]; Times @@ ((fi[[All, 1]]+1)^fi[[All, 2]])); Table[a[n], {n, 0, 66}](* Jean-François Alcover, Nov 14 2011 *)
    f[n_] := Times @@ ((1 + #[[1]])^#[[2]] & /@ FactorInteger@ n); Array[f, 67, 0] (* Robert G. Wilson v, Sep 13 2017 *)
  • PARI
    a(n) = if(n<=1, n + 1, my(f=factor(n)); prod(i=1, #f~, (1 + f[i, 1])^f[i, 2])) \\ Harry J. Smith, Sep 15 2009
    
  • Python
    from math import prod
    from sympy import factorint
    def A064478(n): return prod((p+1)**e for p,e in factorint(n).items()) if n!=1 else 2 # Chai Wah Wu, Mar 26 2025

Extensions

More terms from Vladeta Jovovic, Oct 06 2001
Edited by Daniel Forgues, Nov 18 2009