cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064520 a(n) = + 1 - 2 - 3 + 4 + 5 + 6 - 7 - 8 - 9 - 10 + 11 + 12 + 13 + 14 + 15 - ... + (+-1)*n, where there is one plus, two minuses, three pluses, etc. (see A002024).

Original entry on oeis.org

1, -1, -4, 0, 5, 11, 4, -4, -13, -23, -12, 0, 13, 27, 42, 26, 9, -9, -28, -48, -69, -47, -24, 0, 25, 51, 78, 106, 77, 47, 16, -16, -49, -83, -118, -154, -117, -79, -40, 0, 41, 83, 126, 170, 215, 169, 122, 74, 25, -25, -76, -128, -181, -235, -290, -234, -177, -119, -60, 0, 61, 123, 186, 250, 315, 381, 314, 246, 177
Offset: 1

Views

Author

Jonathan Ayres (jonathan.ayres(AT)btinternet.com), Oct 07 2001

Keywords

Comments

|a(n)| takes its locally maximal values when n is a triangular number, the maximal values being given by A019298.
The maximal positive/negative values occur for n = 1, 3, 6, 10, 15, 21 ... the triangular numbers and are a(n) = 1, -4, 11, -23, 42, -69,106, 215, 381, 616 ... +- int(sqrt(n^3/2) + 0.22098 * sqrt(n)). a(n) = n for n = 5, 13, 25, 41, 61, 85, ... m*(m*2-2)+1 and the previous number is equal to 0. Positive numbers which do not occur in this sequence are 2, 3, 6, 7, 8, 10, 12, 14, 15, 17, 18, 19, 20, 21, 22, 23, 24, 28, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 40, 43, 44, 45, 46, 48, ...

Examples

			a(9) = -13 because 1 - 2 - 3 + 4 + 5 + 6 - 7 - 8 - 9 = -13.
		

Crossrefs

Programs

  • Maple
    a := proc(n) option remember: if n=1 then RETURN(1) fi: a(n-1) + n*(-1)^( floor(1/2 + sqrt(2*n)+1)); end: for n from 1 to 150 do printf(`%d,`,a(n)) od:
  • Mathematica
    Accumulate[Flatten[Table[(-1)^(n+1) Range[(n(n-1))/2+1,(n(n+1))/2], {n,15}]]] (* Harvey P. Dale, Apr 22 2015 *)
  • PARI
    t(n) = floor(1/2+sqrt(2*n))
    for(n=1,200,print1(sum(k=1,n,(-1)^(t(k)+1)*k)," "))
    
  • PARI
    t(n)= { floor(sqrt(2*n) + 1/2) }
    { for (n=1, 1000, a=sum(k=1, n, (-1)^(t(k) + 1)*k); write("b064520.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 17 2009
    
  • Python
    from math import isqrt
    def A064520(n): return sum(k if (isqrt(k<<3)+1>>1)&1 else -k for k in range(1,n+1)) # Chai Wah Wu, Oct 16 2022

Formula

a(n) = Sum_{k=1..n} (-1)^(A002024(k)+1)*k.

Extensions

More terms from James Sellers, Jason Earls and Vladeta Jovovic, Oct 08 2001