A064520 a(n) = + 1 - 2 - 3 + 4 + 5 + 6 - 7 - 8 - 9 - 10 + 11 + 12 + 13 + 14 + 15 - ... + (+-1)*n, where there is one plus, two minuses, three pluses, etc. (see A002024).
1, -1, -4, 0, 5, 11, 4, -4, -13, -23, -12, 0, 13, 27, 42, 26, 9, -9, -28, -48, -69, -47, -24, 0, 25, 51, 78, 106, 77, 47, 16, -16, -49, -83, -118, -154, -117, -79, -40, 0, 41, 83, 126, 170, 215, 169, 122, 74, 25, -25, -76, -128, -181, -235, -290, -234, -177, -119, -60, 0, 61, 123, 186, 250, 315, 381, 314, 246, 177
Offset: 1
Examples
a(9) = -13 because 1 - 2 - 3 + 4 + 5 + 6 - 7 - 8 - 9 = -13.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
Programs
-
Maple
a := proc(n) option remember: if n=1 then RETURN(1) fi: a(n-1) + n*(-1)^( floor(1/2 + sqrt(2*n)+1)); end: for n from 1 to 150 do printf(`%d,`,a(n)) od:
-
Mathematica
Accumulate[Flatten[Table[(-1)^(n+1) Range[(n(n-1))/2+1,(n(n+1))/2], {n,15}]]] (* Harvey P. Dale, Apr 22 2015 *)
-
PARI
t(n) = floor(1/2+sqrt(2*n)) for(n=1,200,print1(sum(k=1,n,(-1)^(t(k)+1)*k)," "))
-
PARI
t(n)= { floor(sqrt(2*n) + 1/2) } { for (n=1, 1000, a=sum(k=1, n, (-1)^(t(k) + 1)*k); write("b064520.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 17 2009
-
Python
from math import isqrt def A064520(n): return sum(k if (isqrt(k<<3)+1>>1)&1 else -k for k in range(1,n+1)) # Chai Wah Wu, Oct 16 2022
Formula
a(n) = Sum_{k=1..n} (-1)^(A002024(k)+1)*k.
Comments