A064550 a(1) = 2, a(n)=a(n-1)+2*Q(n)-n, n > 1 where Q = A005185.
1, 2, 4, 7, 9, 12, 16, 19, 23, 26, 28, 33, 37, 40, 46, 49, 53, 58, 62, 67, 71, 74, 76, 85, 89, 92, 98, 103, 107, 110, 120, 123, 125, 132, 140, 143, 147, 154, 158, 163, 169, 174, 180, 185, 189, 192, 194, 211, 211, 212, 222, 227, 227, 234, 240, 241
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Roger L. Bagula, A Simulation of a Prime Type of Sequence: The Hofstadter Integers [broken link]
Programs
-
ARIBAS
function a064550(maxarg: integer); var n,r,rm,q: integer; qar: array; begin qar := alloc(array,maxarg + 1); qar[0] := 1; for n := 1 to maxarg do if n < 2 then q := 1; else q := qar[n - qar[n - 1]] + qar[n - qar[n - 2]]; end; qar[n] := q; if n = 1 then r := 2; else r := rm + round(2*(q - n/2)); end; rm := r; write(r," "); end; end; a064550(65);
-
Haskell
a064550 n = a064550_list !! n a064550_list = 1 : 2 : zipWith3 (\a q n -> a + 2 * q - n) (tail a064550_list) (drop 2 a005185_list) [2..] -- Reinhard Zumkeller, May 13 2012
-
Maple
A064550 := proc(n) option remember; if n=0 then 1 else A064550(n-1)+2*A005185(n-1)(n) - n; fi; end;
-
Mathematica
q[0] = q[1] = 1; q[n_] := q[n - q[n - 1]] + q[n - q[n - 2]]; a[1] = 2; a[n_] := a[n] = a[n - 1] + 2*(q[n] - n/2); Table[ a[n], {n, 1, 70} ]