cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A035174 Ramanujan's tau function (or tau numbers (A000594)) for 2^n.

Original entry on oeis.org

1, -24, -1472, 84480, 987136, -196706304, 2699296768, 338071388160, -13641873096704, -364965248630784, 36697722069188608, -133296500464680960, -71957818786545926144, 1999978883828768833536, 99370119662955604738048
Offset: 0

Views

Author

Robert G. Wilson v, Jan 04 2003

Keywords

Crossrefs

Programs

Formula

G.f.: 1/(1 + 24x + 2048x^2). Proof by Robin Chapman: Follows from the formula tau(p^{n+2}) = tau(p)tau(p^{n+1}) - p^11 tau(p^n) for prime p, which comes from the theory of Hecke operators on modular forms. The p = 2 case gives a recurrence for tau(2^n) leading immediately to the g.f.

A299206 Ramanujan's tau function (or tau numbers (A000594)) for 5^n.

Original entry on oeis.org

1, 4830, -25499225, -359001100500, -488895969711875, 15167983076643206250, 97133231781274332671875, -271470664160664028370625000, -6054036890966043032024015234375, -15985594659896064584391569753906250, 218396847859403327980436336954599609375
Offset: 0

Views

Author

Seiichi Manyama, Feb 05 2018

Keywords

Crossrefs

Programs

  • Mathematica
    RamanujanTau[5^Range[0,10]] (* Harvey P. Dale, Jun 06 2024 *)
  • PARI
    {a(n) = ramanujantau(5^n)}

Formula

G.f.: 1/(1-4830*x+48828125*x^2).
a(n) = A000594(A000351(n)). - Michel Marcus, Feb 05 2018
Showing 1-2 of 2 results.