A064796 Largest integer m such that every permutation (p_1, ..., p_n) of (1, ..., n) satisfies p_i * p_{i+1} >= m for some i, 1 <= i <= n, where p_{n+1} = p_1.
1, 2, 6, 8, 12, 15, 20, 24, 30, 35, 42, 48, 56, 63, 72, 80, 90, 99, 110, 120, 132, 143, 156, 168, 182, 195, 210, 224, 240, 255, 272, 288, 306, 323, 342, 360, 380, 399, 420, 440, 462, 483, 506, 528, 552, 575, 600, 624, 650, 675, 702, 728, 756, 783, 812, 840, 870
Offset: 1
Examples
n=5: we must arrange the numbers 1..5 in a circle so that the max of the products of pairs of adjacent terms is minimized. The answer is 15243, with max product = 12, so a(5) = 12.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..10000
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Magma
[1,2] cat [1/8*(3-3*(-1)^n+8*n+2*n^2): n in [3..60]]; // Vincenzo Librandi, Feb 24 2017
-
Mathematica
Join[{1,2},LinearRecurrence[{2,0,-2,1},{6,8,12,15},60]] (* Harvey P. Dale, Sep 17 2013 *)
-
PARI
a(n)=if(n<3, n, if(n%2, (n+1)*(n+3), (n+4)*n)/4) \\ Charles R Greathouse IV, Feb 19 2017
Formula
For odd n > 2, a(n) = (n+1)(n+3)/4. For even n > 2, a(n) = n(n+4)/4. - David Wasserman, Aug 19 2002
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>6. G.f.: -x*(x^5-x^4-2*x^3+2*x^2+1) / ((x-1)^3*(x+1)). - Colin Barker, Aug 28 2013
For n>2: a(n)=1/8*(3-3*(-1)^n+8*n+2*n^2). - Tom Edgar, Aug 28 2013
Extensions
More terms from Naohiro Nomoto and Vladeta Jovovic, Oct 22 2001
More terms from David Wasserman, Aug 19 2002
Comments