A064808 a(n) is the (n+1)st (n+2)-gonal number.
1, 3, 9, 22, 45, 81, 133, 204, 297, 415, 561, 738, 949, 1197, 1485, 1816, 2193, 2619, 3097, 3630, 4221, 4873, 5589, 6372, 7225, 8151, 9153, 10234, 11397, 12645, 13981, 15408, 16929, 18547, 20265, 22086, 24013, 26049, 28197, 30460, 32841, 35343, 37969, 40722
Offset: 0
Links
- Harry J. Smith, Table of n, a(n) for n = 0..1000
- Justin Crum, Cyrus Cheng, David A. Ham, Lawrence Mitchell, Robert C. Kirby, Joshua A. Levine, and Andrew Gillette, Bringing Trimmed Serendipity Methods to Computational Practice in Firedrake, arXiv:2104.12986 [math.NA], 2021.
- Index to divisibility sequences
- Index to sequences related to polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(n+1)*(n^2+2)/2 : n in [0..50]]; // Wesley Ivan Hurt, Feb 21 2015
-
Maple
A064808:=n->(n+1)*(n^2+2)/2: seq(A064808(n), n=0..50); # Wesley Ivan Hurt, Feb 21 2015
-
Mathematica
Table[(n + 1) (n^2 + 2)/2, {n, 0, 50}] (* Wesley Ivan Hurt, Feb 21 2015 *)
-
PARI
a(n) = { (n + 1)*(n^2 + 2)/2 } \\ Harry J. Smith, Sep 26 2009
Formula
a(n) = (n+1)*(n^2 + 2)/2.
From Paul Barry, Nov 18 2005: (Start)
a(n) = Sum_{k=0..n} Sum_{j=0..n} (k-(k-1)*C(0, j-k)).
G.f.: (1 - x + 3x^2)/(1 - x)^4. - R. J. Mathar, Jul 07 2009
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Feb 21 2015
a(n) = A057145(n+2,n+1). - R. J. Mathar, Jul 28 2016
Comments