cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064808 a(n) is the (n+1)st (n+2)-gonal number.

Original entry on oeis.org

1, 3, 9, 22, 45, 81, 133, 204, 297, 415, 561, 738, 949, 1197, 1485, 1816, 2193, 2619, 3097, 3630, 4221, 4873, 5589, 6372, 7225, 8151, 9153, 10234, 11397, 12645, 13981, 15408, 16929, 18547, 20265, 22086, 24013, 26049, 28197, 30460, 32841, 35343, 37969, 40722
Offset: 0

Views

Author

Floor van Lamoen, Oct 22 2001

Keywords

Comments

Sum of n terms of the arithmetic progression with first term 1 and common difference n-1. - Amarnath Murthy, Aug 04 2005
a(n) is the sum of (n+1)-th row terms of triangle A144693. - Gary W. Adamson, Sep 19 2008
See also A131685(k) = smallest positive number m such that c(i) = m*(i^1 + 1)*(i^2 + 2)* ... *(i^k+ k) / k! takes integral values for all i>=0: For k=2, A131685(k)=1, which implies that this is a well-defined integer sequence. - Alexander R. Povolotsky, Apr 24 2015

Crossrefs

Main diagonal of A057145.
Row sums of A076110.
Cf. A144693. - Gary W. Adamson, Sep 19 2008

Programs

Formula

a(n) = (n+1)*(n^2 + 2)/2.
From Paul Barry, Nov 18 2005: (Start)
a(n) = Sum_{k=0..n} Sum_{j=0..n} (k-(k-1)*C(0, j-k)).
a(n) = A006002(n) - A000096(n-2). (End)
G.f.: (1 - x + 3x^2)/(1 - x)^4. - R. J. Mathar, Jul 07 2009
a(n) = A006003(n+1) - A002378(n). - Rick L. Shepherd, Feb 21 2015
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, Feb 21 2015
a(n) = A057145(n+2,n+1). - R. J. Mathar, Jul 28 2016