cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A057145 Square array of polygonal numbers T(n,k) = ((n-2)*k^2 - (n-4)*k)/2, n >= 2, k >= 1, read by antidiagonals upwards.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 9, 10, 5, 1, 6, 12, 16, 15, 6, 1, 7, 15, 22, 25, 21, 7, 1, 8, 18, 28, 35, 36, 28, 8, 1, 9, 21, 34, 45, 51, 49, 36, 9, 1, 10, 24, 40, 55, 66, 70, 64, 45, 10, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 11, 1, 12, 30, 52, 75, 96, 112
Offset: 2

Views

Author

N. J. A. Sloane, Sep 12 2000

Keywords

Comments

The set of the "nontrivial" entries T(n>=3,k>=3) is in A090466. - R. J. Mathar, Jul 28 2016
T(n,k) is the smallest number that can be expressed as the sum of k consecutive positive integers that differ by n - 2. In other words: T(n,k) is the sum of k terms of the arithmetic progression with common difference n - 2 and 1st term 1, (see the example). - Omar E. Pol, Apr 29 2020

Examples

			Array T(n k) (n >= 2, k >= 1) begins:
  1,  2,  3,  4,   5,   6,   7,   8,   9,  10,  11, ...
  1,  3,  6, 10,  15,  21,  28,  36,  45,  55,  66, ...
  1,  4,  9, 16,  25,  36,  49,  64,  81, 100, 121, ...
  1,  5, 12, 22,  35,  51,  70,  92, 117, 145, 176, ...
  1,  6, 15, 28,  45,  66,  91, 120, 153, 190, 231, ...
  1,  7, 18, 34,  55,  81, 112, 148, 189, 235, 286, ...
  1,  8, 21, 40,  65,  96, 133, 176, 225, 280, 341, ...
  1,  9, 24, 46,  75, 111, 154, 204, 261, 325, 396, ...
  1, 10, 27, 52,  85, 126, 175, 232, 297, 370, 451, ...
  1, 11, 30, 58,  95, 141, 196, 260, 333, 415, 506, ...
  1, 12, 33, 64, 105, 156, 217, 288, 369, 460, 561, ...
  1, 13, 36, 70, 115, 171, 238, 316, 405, 505, 616, ...
  1, 14, 39, 76, 125, 186, 259, 344, 441, 550, 671, ...
-------------------------------------------------------
From _Wolfdieter Lang_, Nov 04 2014: (Start)
The triangle a(k, m) begins:
  k\m 1  2  3  4  5   6   7   8   9  10  11  12 13 14 ...
  2:  1
  3:  1  2
  4:  1  3  3
  5:  1  4  6  4
  6:  1  5  9 10  5
  7:  1  6 12 16 15   6
  8:  1  7 15 22 25  21   7
  9:  1  8 18 28 35  36  28   8
  10: 1  9 21 34 45  51  49  36   9
  11: 1 10 24 40 55  66  70  64  45  10
  12: 1 11 27 46 65  81  91  92  81  55  11
  13: 1 12 30 52 75  96 112 120 117 100  66  12
  14: 1 13 33 58 85 111 133 148 153 145 121  78 13
  15: 1 14 36 64 95 126 154 176 189 190 176 144 91 14
  ...
-------------------------------------------------------
a(2,1) = T(2,1), a(6, 3) = T(4, 3). (End)
.
From _Omar E. Pol_, May 03 2020: (Start)
Illustration of the corner of the square array:
.
  1       2         3           4
  O     O O     O O O     O O O O
.
  1       3         6          10
  O     O O     O O O     O O O O
          O       O O       O O O
                    O         O O
                                O
.
  1       4         9          16
  O     O O     O O O     O O O O
          O       O O       O O O
          O       O O       O O O
                    O         O O
                    O         O O
                                O
                                O
.
  1       5        12          22
  O     O O     O O O     O O O O
          O       O O       O O O
          O       O O       O O O
          O       O O       O O O
                    O         O O
                    O         O O
                    O         O O
                                O
                                O
                                O
(End)
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, p. 189, 1966.
  • J. H. Conway and R. K. Guy, The Book of Numbers, Springer-Verlag (Copernicus), p. 38, 1996.

Crossrefs

Many rows and columns of this array are in the database.
Cf. A055795 (antidiagonal sums), A064808 (main diagonal).

Programs

  • Magma
    /* As square array: */ t:=func; [[t(s,n): s in [1..11]]: n in [2..14]]; // Bruno Berselli, Jun 24 2013
  • Maple
    A057145 := proc(n,k)
        ((n-2)*k^2-(n-4)*k)/2 ;
    end proc:
    seq(seq(A057145(d-k,k),k=1..d-2),d=3..12); # R. J. Mathar, Jul 28 2016
  • Mathematica
    nn = 12; Flatten[Table[k (3 - k^2 - n + k*n)/2, {n, 2, nn}, {k, n - 1}]] (* T. D. Noe, Oct 10 2012 *)

Formula

T(2n+4,n) = n^3. - Stuart M. Ellerstein (ellerstein(AT)aol.com), Aug 28 2000
T(n, k) = T(n-1, k) + k*(k-1)/2 [with T(2, k)=k] = T(n, k-1) + 1 + (n-2)*(k-1) [with T(n, 0)=0] = k + (n-2)k(k-1)/2 = k + A063212(n-2, k-1). - Henry Bottomley, Jul 11 2001
G.f. for row n: x*(1+(n-3)*x)/(1-x)^3, n>=2. - Paul Barry, Feb 21 2003
From Wolfdieter Lang, Nov 05 2014: (Start)
The triangle is a(n, m) = T(n-m+1, m) = (1/2)*m*(n*(m-1) + 3 - m^2) for n >= 2, m = 1, 2, ..., n-1 and zero elsewhere.
O.g.f. for column m (without leading zeros): (x*binomial(m,2) + (1+2*m-m^2)*(m/2)*(1-x))/(x^(m-1)*(1-x)^2). (End)
T(n,k) = A139600(n-2,k) = A086270(n-2,k). - R. J. Mathar, Jul 28 2016
Row sums of A077028: T(n+2,k+1) = Sum_{j=0..k} A077028(n,j), where A077028(n,k) = 1+n*k is the square array interpretation of A077028 (the 1D polygonal numbers). - R. J. Mathar, Jul 30 2016
G.f.: x^2*y*(1 - x - y + 2*x*y)/((1 - x)^2*(1 - y)^3). - Stefano Spezia, Apr 12 2024

Extensions

a(50)=49 corrected to a(50)=40 by Jean-François Alcover, Jul 22 2011
Edited: Name shortened, offset in Paul Barry's g.f. corrected and Conway-Guy reference added. - Wolfdieter Lang, Nov 04 2014

A049614 n! divided by its squarefree kernel.

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 24, 24, 192, 1728, 17280, 17280, 207360, 207360, 2903040, 43545600, 696729600, 696729600, 12541132800, 12541132800, 250822656000, 5267275776000, 115880067072000, 115880067072000, 2781121609728000, 69528040243200000, 1807729046323200000
Offset: 0

Views

Author

Keywords

Comments

Also product of composite numbers less than or equal to n. - Benoit Cloitre, Aug 18 2002
Also n! divided by n primorial (or n!/n#). - Cino Hilliard, Mar 26 2006
From Alexander R. Povolotsky and Peter J. C. Moses, Aug 27 2007: (Start)
It appears that a(n) = smallest positive number m such that the sequence b(n) = { m (i^1 + 1!) (i^2 + 2!) ... (i^n + n!) / n! : i >= 0 } takes integral values. [It would be nice to have a proof of this! - N. J. A. Sloane] Cf. A064808 (for n=2), A131682 (for n=3), A131683 (for n=4), A131527 (for n=5), A131684 (for n=6), A131528. See also A129995, A131685. (End)
It appears that every term > 4 is divisible by 24. - Alexander R. Povolotsky, Oct 18 2007
The above comment is correct since each term divides the next. - Charles R Greathouse IV, Jan 16 2012
When n is not a prime number, then a(n)=m*n, where m is some integer >0; such a(n) make up the A036691 Otherwise, when n is a prime number, then a(n)=a(k), where k is the largest nonprime number preceding n (kAlexander R. Povolotsky, Aug 21 2012

Examples

			n = 11: 11! = 39916800 = 2310*17280 and 2310=2*3*5*7*11.
		

Crossrefs

Programs

  • Magma
    A049614:= func< n | n le 1 select 1 else Factorial(n)/(&*[NthPrime(j): j in [1..#PrimesUpTo(n)]]) >;
    [A049614(n): n in [0..40]]; // G. C. Greubel, Jul 21 2023
    
  • Maple
    primorial := n -> mul(k, k=select(isprime, [$1..n]));
    A049614 := n -> factorial(n)/primorial(n);
    seq(A049614(i),i=0..24); # Peter Luschny, Feb 16 2013
  • Mathematica
    Table[n!/Product[ Prime[i], {i, PrimePi[n]}], {n, 24}]
  • PARI
    a(n)=prod(i=1,n,i^if(isprime(i),0,1))
    
  • PARI
    a(n)=n!/prod(i=1,primepi(n),prime(i)) \\ Charles R Greathouse IV, Aug 30 2012
    
  • SageMath
    def A049614(n): return factorial(n)/product(nth_prime(j) for j in range(1,1+prime_pi(n)))
    [A049614(n) for n in range(41)] # G. C. Greubel, Jul 21 2023

Formula

a(n) = A000142(n)/A034386(n).

Extensions

Edited by N. J. A. Sloane, Oct 07 2007
Offset set to 0, a(0)=1 prepended to data, Peter Luschny, Feb 16 2013

A131685 a(n) = smallest positive number m such that c(i) = m (i^1 + 1) (i^2 + 2) ... (i^n + n) / n! takes integral values for all i>=0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 1, 1, 1, 1, 1, 11, 11, 11, 55, 143, 13, 91, 91, 91, 91, 91, 1001, 17017, 595595, 595595, 17017, 46189, 600457, 3002285, 3002285, 3002285, 3002285, 6605027, 3002285, 726869, 726869, 726869
Offset: 1

Views

Author

Alexander R. Povolotsky and Peter J. C. Moses, Sep 12 2007, revised Sep 17 2007

Keywords

Comments

It appears that none of the terms are divisible by 3. - Alexander R. Povolotsky, Oct 18 2007

Crossrefs

Cf. A000027 (for n=1), A064808 (n=2), A131509 (n=3), A129995 (n=4), A131675 (n=5), ..., A131680 (n=10).
See also A049614.

Programs

  • Maple
    # Maple program from Cyril Banderier, Sep 18 2007:
    List:=NULL: for n from 1 to 1000 do m:=1: #running till n=50 will last 2 min.
    for i from 1 to numtheory[pi](n) do div:=ithprime(i): d:=1: e:=0: oldmini:=-1:mini:=0:
    while oldmini<>mini do e:=e+1: #the last time consuming loop could be skipped by proving e<=floor(ln(n)/ln(div)):
    d:=d*div;for x from 0 to d-1 do [seq((x &^k mod d)+k mod d,k=1..n)]:contrib[d,x]:=nops(select(has,%,0)): od:
    L:=seq(add(contrib[div^j,x mod div^j],j=1..e),x=0..div^e-1); oldmini:=mini: mini:=min(L): od:
    if mini
    				

Extensions

More terms from Cyril Banderier, Sep 17 2007

A122797 A P_3-stuttered arithmetic progression with a(n+1) = a(n) if n is a triangular number, a(n+1) = a(n) + 1 otherwise.

Original entry on oeis.org

1, 1, 2, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 10, 11, 11, 12, 13, 14, 15, 16, 16, 17, 18, 19, 20, 21, 22, 22, 23, 24, 25, 26, 27, 28, 29, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 79, 80, 81, 82, 83, 84, 85, 86, 87
Offset: 1

Views

Author

Grady Bullington (bullingt(AT)uwosh.edu), Sep 14 2006

Keywords

Comments

P_3(i) = the i-th triangular number.
As a triangle [1; 1,2; 2,3,4; ...], row sums = A064808: (1, 3, 9, 22, 45, 81, ...). - Gary W. Adamson, Aug 10 2007
a(n) = n - A003056(n-1). - Reinhard Zumkeller, Feb 12 2012

Crossrefs

Programs

  • Haskell
    a122797 n = a122797_list !! (n-1)
    a122797_list  = 1 : zipWith (+) a122797_list (map ((1 -) . a010054) [1..])
    -- Reinhard Zumkeller, Feb 12 2012
    
  • Mathematica
    nxt[{n_,a_}]:={n+1,If[OddQ[Sqrt[8n+1]],a,a+1]}; NestList[nxt,{1,1},100][[All,2]] (* Harvey P. Dale, Oct 10 2018 *)
  • PARI
    isTriang(n) = {if (! issquare(8*n+1), return (0)); return (1);}
    lista(m) = {aa = 1; for (i=1, m, print1(aa, ", "); if (! isTriang(i), aa = aa + 1););} \\ Michel Marcus, Apr 01 2013
    
  • Python
    from math import isqrt
    def A122797(n): return n+1-(k:=isqrt(m:=n<<1))-int((m<<2)>(k<<2)*(k+1)+1) # Chai Wah Wu, Jul 26 2022

Formula

a(n) = A001614(n) - n + 1.

Extensions

Definition corrected by Michel Marcus, Apr 01 2013

A129995 a(n) = (n + 1)*(n^2 + 2)*(n^3 + 3)*(n^4 + 4)/4!.

Original entry on oeis.org

1, 5, 165, 4675, 65325, 543456, 3155425, 14146210, 52259625, 166192975, 469090061, 1201490445, 2839166005, 6268589250, 13060542825, 25881747316, 49095506065, 89615392425, 158091087925, 270522770375, 450420100221, 731644012660, 1162094343345, 1808433948150
Offset: 0

Views

Author

Alexander R. Povolotsky, Aug 19 2007, Aug 25 2007

Keywords

Comments

Following my conjecture, computations by Peter J. C. Moses, mediation by Clark Kimberling and helpful comments from George E. Andrews, it is now known that a(n) = (n^1 + 1)*(n^2 + 2)*(n^3 + 3)*...*(n^k + k)/k! is an integer-valued sequence if and only if k belongs to {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 17, 18, 19, 20, 21}; this is the case for k=4; see generalization in A131685.

Crossrefs

Cf. A000027 (k=1), A064808 (k=2), A131509 (k=3), this sequence (k=4), A131675 (k=5), ..., A131680 (k=10).
See A131685 for a generalization.

Programs

  • Magma
    [(n^1 + 1)*(n^2 + 2)*(n^3 + 3)*(n^4 + 4)/24: n in [0..30]]; // Vincenzo Librandi, Apr 25 2015
    
  • Maple
    p:=proc(n,i) mul( n^j+j, j=1..i)/i!; end; [seq(p(n,4),n=0..30)];
    seq((n+1)*(n^2+2)*(n^3+3)*(n^4+4)/factorial(4), n = 0 .. 20) # Emeric Deutsch, Aug 26 2007
  • Mathematica
    Table[x = 4; Product[(n^k) + k, {k, x}]/x!, {n, 0, 23}] (* Michael De Vlieger, Apr 24 2015 *)
    LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,5,165,4675,65325,543456,3155425,14146210,52259625,166192975,469090061},30] (* Harvey P. Dale, Dec 07 2021 *)
  • PARI
    vector(20,n,n--;(n+1)*(n^2+2)*(n^3+3)*(n^4+4)/4!) \\ Derek Orr, Apr 25 2015
    
  • PARI
    A129995(n)=(n+1)*(n^2+2)*(n^3+3)*(n^4+4)/12 \\ M. F. Hasler, May 02 2015

Formula

G.f.: (1-6x+165x^2+2970x^3+22480x^4+55969x^5+51511x^6+16490x^7+1595x^8+25x^9)/(1-x)^11. - Emeric Deutsch, Aug 26 2007
G.f.: -(1 + x*(-6 + x*(165 + x*(2970 + x*(22480 + x*(55969 + x*(51511 + 5*x*(3298 + x*(319 + 5*x))))))))) / (x - 1)^11. - Peter J. C. Moses, Aug 29 2007

A081422 Triangle read by rows in which row n consists of the first n+1 n-gonal numbers.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 9, 16, 25, 1, 5, 12, 22, 35, 51, 1, 6, 15, 28, 45, 66, 91, 1, 7, 18, 34, 55, 81, 112, 148, 1, 8, 21, 40, 65, 96, 133, 176, 225, 1, 9, 24, 46, 75, 111, 154, 204, 261, 325, 1, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451
Offset: 0

Views

Author

Paul Barry, Mar 21 2003

Keywords

Examples

			The array starts
  1  1  3 10 ...
  1  2  6 16 ...
  1  3  9 22 ...
  1  4 12 28 ...
The triangle starts
  1;
  1,  1;
  1,  2,  3;
  1,  3,  6, 10;
  1,  4,  9, 16, 25;
  ...
		

Crossrefs

Antidiagonals are composed of n-gonal numbers.

Programs

  • GAP
    Flat(List([0..10], n-> List([1..n+1], k-> k*((n-2)*k-(n-4))/2 ))); # G. C. Greubel, Aug 14 2019
  • Magma
    [[k*((n-2)*k-(n-4))/2: k in [1..n+1]]: n in [0..10]]; // G. C. Greubel, Oct 13 2018
    
  • Mathematica
    Table[PolygonalNumber[n,i],{n,0,10},{i,n+1}]//Flatten (* Requires Mathematica version 10.4 or later *) (* Harvey P. Dale, Aug 27 2016 *)
  • PARI
    tabl(nn) = {for (n=0, nn, for (k=1, n+1, print1(k*((n-2)*k-(n-4))/2, ", ");); print(););} \\ Michel Marcus, Jun 22 2015
    
  • Sage
    [[k*((n-2)*k -(n-4))/2 for k in (1..n+1)] for n in (0..10)] # G. C. Greubel, Aug 14 2019
    

Formula

Array of coefficients of x in the expansions of T(k, x) = (1 + k*x -(k-2)*x^2)/(1-x)^4, k > -4.
T(n, k) = k*((n-2)*k -(n-4))/2 (see MathWorld link). - Michel Marcus, Jun 22 2015

A131509 a(n) = (n + 1)*(n^2 + 2)*(n^3 + 3)/6.

Original entry on oeis.org

1, 4, 33, 220, 1005, 3456, 9709, 23528, 50985, 101260, 187561, 328164, 547573, 877800, 1359765, 2044816, 2996369, 4291668, 6023665, 8303020, 11260221, 15047824, 19842813, 25849080, 33300025, 42461276, 53633529, 67155508, 83407045, 102812280, 125842981
Offset: 0

Views

Author

Alexander R. Povolotsky, Aug 13 2007, Aug 25 2007

Keywords

Comments

See also A131685(k) = smallest positive number m such that c(i) = m (i^1 + 1) (i^2 + 2) ... (i^k+ k) / k! takes integral values for all i>=0. For k=3, A131685(k)=1, which implies that this is a well defined integer sequence. - Alexander R. Povolotsky, May 18 2015

Crossrefs

Cf. A000027 (k=1), A064808 (k=2), this sequence (k=3), A129995 (k=4), A131675 (k=5), ..., A131680 (k=10).

Programs

  • Magma
    [(n^1 + 1)*(n^2 + 2)*(n^3 + 3)/6: n in [0..30]]; // Vincenzo Librandi, Apr 25 2015
    
  • Maple
    p:=proc(n,i) mul( n^j+j, j=1..i)/i!; end; [seq(p(n,3),n=0..30)];
    seq((1/6)*(n+1)*(n^2+2)*(n^3+3),n=0..25); # Emeric Deutsch, Aug 23 2007
  • Mathematica
    Table[x = 3; Product[(n^k) + k, {k, x}]/6, {n, 0, 27}] (* Michael De Vlieger, Apr 24 2015 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,4,33,220,1005,3456,9709},40] (* Harvey P. Dale, Oct 18 2016 *)
  • Maxima
    A131509(n):=(n^1 + 1)*(n^2 + 2)*(n^3 + 3)/6$
    makelist(A131509(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
    
  • PARI
    vector(20,n,n--;(n+1)*(n^2+2)*(n^3+3)/3!) \\ Derek Orr, Apr 25 2015
    
  • PARI
    A131509(n)=(n+1)*(n^2+2)*(n^3+3)/6 \\ M. F. Hasler, May 02 2015

Formula

G.f.: (1 -3x +26x^2 +38x^3 +53x^4 +5x^5)/(1-x)^7. - Emeric Deutsch, Aug 23 2007

Extensions

Corrected and extended by R. J. Mathar and Emeric Deutsch, Aug 21 2007

A131675 a(n) = (Product_{i=1..5} n^i+i)/5!.

Original entry on oeis.org

1, 6, 1221, 231880, 13443885, 340203456, 4910472385, 47565216504, 342540938025, 1962871989130, 9382270310061, 38701449021984, 141297910237237, 465502930269300, 1404867737405385, 3930816255364816, 10296122969028753, 25448298063869070, 59744930256741205
Offset: 0

Views

Author

Keywords

Comments

See A131685 about well-definedness. - M. F. Hasler, May 02 2015

Programs

  • Magma
    [((n+1)*(n^2+2)*(n^3+3)*(n^4+4)*(n^5+5))/Factorial(5): n in [0..20]]; // Vincenzo Librandi, Apr 25 2015
    
  • Mathematica
    Table[x = 5; Product[(n^k) + k, {k, x}]/x!, {n, 0, 17}] (* Michael De Vlieger, Apr 24 2015 *)
    LinearRecurrence[{16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1},{1,6,1221,231880,13443885,340203456,4910472385,47565216504,342540938025,1962871989130,9382270310061,38701449021984,141297910237237,465502930269300,1404867737405385,3930816255364816},20] (* Harvey P. Dale, Oct 04 2024 *)
  • PARI
    Vec((135*x^14 +86852*x^13 +5864611*x^12 +109724496*x^11 +782427151*x^10 +2468818430*x^9 +3704965659*x^8 +2710222344*x^7 +952834509*x^6 +152249688*x^5 +9878785*x^4 +212504*x^3 +1245*x^2 -10*x +1) / (x -1)^16 + O(x^100)) \\ Colin Barker, Apr 24 2015
    
  • PARI
    A131675(n,k=5)=prod(i=1,k,(n^i+i))/k! \\ Changing the optional 2nd argument allows one to produce A000027 (k=1), A064808 (k=2), A131509 (k=3), A129995 (k=4), A131676 (k=6), ..., A131680 (k=10). - M. F. Hasler, May 02 2015

Formula

G.f.: (135*x^14 +86852*x^13 +5864611*x^12 +109724496*x^11 +782427151*x^10 +2468818430*x^9 +3704965659*x^8 +2710222344*x^7 +952834509*x^6 +152249688*x^5 +9878785*x^4 +212504*x^3 +1245*x^2 -10*x +1) / (x -1)^16. - Colin Barker, Apr 24 2015

Extensions

Definition made explicit by M. F. Hasler, May 02 2015

A131680 a(n) = (Product_{i=1..10} n^i+i)/10!.

Original entry on oeis.org

1, 11, 54266008005, 94467113468457039310, 538562285352301951109430061, 102370328298891480707678565453456, 2171004564341130364494477279762016705, 10015112821822553484101305268477882115400, 15057116321451208557735379863635553426467625, 9594364176429126945241161642390324911313805168
Offset: 0

Views

Author

Keywords

Comments

See also A131685(k) = smallest positive number m such that c(i) = m (i^1 + 1) (i^2 + 2) ... (i^k+ k) / k! takes integral values for all i>=0: For k=10, A131685(k)=1, which implies that this is a well defined integer sequence. - Alexander R. Povolotsky, Apr 24 2015; corrected by M. F. Hasler, May 02 2015

Programs

  • Magma
    [((n+1)*(n^2+2)*(n^3+3)*(n^4+4)*(n^5+5)*(n^6+6)*(n^7+7)*(n^8+8)*(n^9+9)*(n^10+10))/Factorial(10): n in [0..10]]; // Vincenzo Librandi, Apr 25 2015
    
  • Mathematica
    Table[x = 10; Product[(n^k) + k, {k, x}]/x!, {n, 0, 9}] (* Michael De Vlieger, Apr 24 2015 *)
  • PARI
    A131680(n,k=10)=prod(i=1,k,(n^i+i))/k! \\ Changing the optional 2nd argument allows one to produce A000027 (k=1), A064808 (k=2), A131509 (k=3), A129995 (k=4), A131675(k=5), ..., A131679 (k=9). - M. F. Hasler, May 02 2015

Extensions

Definition made explicit by M. F. Hasler, May 02 2015

A087908 Largest integer not expressible as a nonnegative linear combination of n and n^2 + 1.

Original entry on oeis.org

-1, 3, 17, 47, 99, 179, 293, 447, 647, 899, 1209, 1583, 2027, 2547, 3149, 3839, 4623, 5507, 6497, 7599, 8819, 10163, 11637, 13247, 14999, 16899, 18953, 21167, 23547, 26099
Offset: 1

Views

Author

John W. Layman, Oct 15 2003

Keywords

Examples

			For n=2, we have to consider nonnegative linear combinations of 2 and 5. Now 3 is not such a combination, but 4=2*2 and 5=1*5 and any positive integer greater than 3 is of the form 2a+b where a and b are nonnegative integers with b equal to 4 or 5. Therefore a(2)=3.
		

Crossrefs

Cf. A064808.

Programs

Formula

a(n) = n^3 - n^2 - 1. [This follows from the well-known fact that the largest integer not expressible as a nonnegative linear combination of a and b is the number ab-a-b. - Matthias Beck (beck(AT)math.sfsu.edu), Sep 22 2005]
a(1)=-1, a(2)=3, a(3)=17, a(4)=47; for n>4, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Jul 19 2011
G.f.: x*(x*((x-1)*x+7)-1)/(x-1)^4. - Harvey P. Dale, Jul 19 2011
a(n) = (n-1)*A064808(n) - n*A064808(n-1). [Bruno Berselli, May 19 2015]
Showing 1-10 of 20 results. Next