A057145 Square array of polygonal numbers T(n,k) = ((n-2)*k^2 - (n-4)*k)/2, n >= 2, k >= 1, read by antidiagonals upwards.
1, 1, 2, 1, 3, 3, 1, 4, 6, 4, 1, 5, 9, 10, 5, 1, 6, 12, 16, 15, 6, 1, 7, 15, 22, 25, 21, 7, 1, 8, 18, 28, 35, 36, 28, 8, 1, 9, 21, 34, 45, 51, 49, 36, 9, 1, 10, 24, 40, 55, 66, 70, 64, 45, 10, 1, 11, 27, 46, 65, 81, 91, 92, 81, 55, 11, 1, 12, 30, 52, 75, 96, 112
Offset: 2
Examples
Array T(n k) (n >= 2, k >= 1) begins: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ... 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 66, ... 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121, ... 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, ... 1, 6, 15, 28, 45, 66, 91, 120, 153, 190, 231, ... 1, 7, 18, 34, 55, 81, 112, 148, 189, 235, 286, ... 1, 8, 21, 40, 65, 96, 133, 176, 225, 280, 341, ... 1, 9, 24, 46, 75, 111, 154, 204, 261, 325, 396, ... 1, 10, 27, 52, 85, 126, 175, 232, 297, 370, 451, ... 1, 11, 30, 58, 95, 141, 196, 260, 333, 415, 506, ... 1, 12, 33, 64, 105, 156, 217, 288, 369, 460, 561, ... 1, 13, 36, 70, 115, 171, 238, 316, 405, 505, 616, ... 1, 14, 39, 76, 125, 186, 259, 344, 441, 550, 671, ... ------------------------------------------------------- From _Wolfdieter Lang_, Nov 04 2014: (Start) The triangle a(k, m) begins: k\m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ... 2: 1 3: 1 2 4: 1 3 3 5: 1 4 6 4 6: 1 5 9 10 5 7: 1 6 12 16 15 6 8: 1 7 15 22 25 21 7 9: 1 8 18 28 35 36 28 8 10: 1 9 21 34 45 51 49 36 9 11: 1 10 24 40 55 66 70 64 45 10 12: 1 11 27 46 65 81 91 92 81 55 11 13: 1 12 30 52 75 96 112 120 117 100 66 12 14: 1 13 33 58 85 111 133 148 153 145 121 78 13 15: 1 14 36 64 95 126 154 176 189 190 176 144 91 14 ... ------------------------------------------------------- a(2,1) = T(2,1), a(6, 3) = T(4, 3). (End) . From _Omar E. Pol_, May 03 2020: (Start) Illustration of the corner of the square array: . 1 2 3 4 O O O O O O O O O O . 1 3 6 10 O O O O O O O O O O O O O O O O O O O O . 1 4 9 16 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O . 1 5 12 22 O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O (End)
References
- A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, p. 189, 1966.
- J. H. Conway and R. K. Guy, The Book of Numbers, Springer-Verlag (Copernicus), p. 38, 1996.
Links
- T. D. Noe, Rows n = 2..100, flattened
- Lukas Andritsch, Boundary algebra of a GL_m-dimer, arXiv:1804.07243 [math.RT], 2018.
- Index to sequences related to polygonal numbers
Crossrefs
Programs
-
Magma
/* As square array: */ t:=func
; [[t(s,n): s in [1..11]]: n in [2..14]]; // Bruno Berselli, Jun 24 2013 -
Maple
A057145 := proc(n,k) ((n-2)*k^2-(n-4)*k)/2 ; end proc: seq(seq(A057145(d-k,k),k=1..d-2),d=3..12); # R. J. Mathar, Jul 28 2016
-
Mathematica
nn = 12; Flatten[Table[k (3 - k^2 - n + k*n)/2, {n, 2, nn}, {k, n - 1}]] (* T. D. Noe, Oct 10 2012 *)
Formula
T(2n+4,n) = n^3. - Stuart M. Ellerstein (ellerstein(AT)aol.com), Aug 28 2000
T(n, k) = T(n-1, k) + k*(k-1)/2 [with T(2, k)=k] = T(n, k-1) + 1 + (n-2)*(k-1) [with T(n, 0)=0] = k + (n-2)k(k-1)/2 = k + A063212(n-2, k-1). - Henry Bottomley, Jul 11 2001
G.f. for row n: x*(1+(n-3)*x)/(1-x)^3, n>=2. - Paul Barry, Feb 21 2003
From Wolfdieter Lang, Nov 05 2014: (Start)
The triangle is a(n, m) = T(n-m+1, m) = (1/2)*m*(n*(m-1) + 3 - m^2) for n >= 2, m = 1, 2, ..., n-1 and zero elsewhere.
O.g.f. for column m (without leading zeros): (x*binomial(m,2) + (1+2*m-m^2)*(m/2)*(1-x))/(x^(m-1)*(1-x)^2). (End)
Row sums of A077028: T(n+2,k+1) = Sum_{j=0..k} A077028(n,j), where A077028(n,k) = 1+n*k is the square array interpretation of A077028 (the 1D polygonal numbers). - R. J. Mathar, Jul 30 2016
G.f.: x^2*y*(1 - x - y + 2*x*y)/((1 - x)^2*(1 - y)^3). - Stefano Spezia, Apr 12 2024
Extensions
a(50)=49 corrected to a(50)=40 by Jean-François Alcover, Jul 22 2011
Edited: Name shortened, offset in Paul Barry's g.f. corrected and Conway-Guy reference added. - Wolfdieter Lang, Nov 04 2014
Comments