cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A049614 n! divided by its squarefree kernel.

Original entry on oeis.org

1, 1, 1, 1, 4, 4, 24, 24, 192, 1728, 17280, 17280, 207360, 207360, 2903040, 43545600, 696729600, 696729600, 12541132800, 12541132800, 250822656000, 5267275776000, 115880067072000, 115880067072000, 2781121609728000, 69528040243200000, 1807729046323200000
Offset: 0

Views

Author

Keywords

Comments

Also product of composite numbers less than or equal to n. - Benoit Cloitre, Aug 18 2002
Also n! divided by n primorial (or n!/n#). - Cino Hilliard, Mar 26 2006
From Alexander R. Povolotsky and Peter J. C. Moses, Aug 27 2007: (Start)
It appears that a(n) = smallest positive number m such that the sequence b(n) = { m (i^1 + 1!) (i^2 + 2!) ... (i^n + n!) / n! : i >= 0 } takes integral values. [It would be nice to have a proof of this! - N. J. A. Sloane] Cf. A064808 (for n=2), A131682 (for n=3), A131683 (for n=4), A131527 (for n=5), A131684 (for n=6), A131528. See also A129995, A131685. (End)
It appears that every term > 4 is divisible by 24. - Alexander R. Povolotsky, Oct 18 2007
The above comment is correct since each term divides the next. - Charles R Greathouse IV, Jan 16 2012
When n is not a prime number, then a(n)=m*n, where m is some integer >0; such a(n) make up the A036691 Otherwise, when n is a prime number, then a(n)=a(k), where k is the largest nonprime number preceding n (kAlexander R. Povolotsky, Aug 21 2012

Examples

			n = 11: 11! = 39916800 = 2310*17280 and 2310=2*3*5*7*11.
		

Crossrefs

Programs

  • Magma
    A049614:= func< n | n le 1 select 1 else Factorial(n)/(&*[NthPrime(j): j in [1..#PrimesUpTo(n)]]) >;
    [A049614(n): n in [0..40]]; // G. C. Greubel, Jul 21 2023
    
  • Maple
    primorial := n -> mul(k, k=select(isprime, [$1..n]));
    A049614 := n -> factorial(n)/primorial(n);
    seq(A049614(i),i=0..24); # Peter Luschny, Feb 16 2013
  • Mathematica
    Table[n!/Product[ Prime[i], {i, PrimePi[n]}], {n, 24}]
  • PARI
    a(n)=prod(i=1,n,i^if(isprime(i),0,1))
    
  • PARI
    a(n)=n!/prod(i=1,primepi(n),prime(i)) \\ Charles R Greathouse IV, Aug 30 2012
    
  • SageMath
    def A049614(n): return factorial(n)/product(nth_prime(j) for j in range(1,1+prime_pi(n)))
    [A049614(n) for n in range(41)] # G. C. Greubel, Jul 21 2023

Formula

a(n) = A000142(n)/A034386(n).

Extensions

Edited by N. J. A. Sloane, Oct 07 2007
Offset set to 0, a(0)=1 prepended to data, Peter Luschny, Feb 16 2013

A131685 a(n) = smallest positive number m such that c(i) = m (i^1 + 1) (i^2 + 2) ... (i^n + n) / n! takes integral values for all i>=0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 7, 7, 1, 1, 1, 1, 1, 11, 11, 11, 55, 143, 13, 91, 91, 91, 91, 91, 1001, 17017, 595595, 595595, 17017, 46189, 600457, 3002285, 3002285, 3002285, 3002285, 6605027, 3002285, 726869, 726869, 726869
Offset: 1

Views

Author

Alexander R. Povolotsky and Peter J. C. Moses, Sep 12 2007, revised Sep 17 2007

Keywords

Comments

It appears that none of the terms are divisible by 3. - Alexander R. Povolotsky, Oct 18 2007

Crossrefs

Cf. A000027 (for n=1), A064808 (n=2), A131509 (n=3), A129995 (n=4), A131675 (n=5), ..., A131680 (n=10).
See also A049614.

Programs

  • Maple
    # Maple program from Cyril Banderier, Sep 18 2007:
    List:=NULL: for n from 1 to 1000 do m:=1: #running till n=50 will last 2 min.
    for i from 1 to numtheory[pi](n) do div:=ithprime(i): d:=1: e:=0: oldmini:=-1:mini:=0:
    while oldmini<>mini do e:=e+1: #the last time consuming loop could be skipped by proving e<=floor(ln(n)/ln(div)):
    d:=d*div;for x from 0 to d-1 do [seq((x &^k mod d)+k mod d,k=1..n)]:contrib[d,x]:=nops(select(has,%,0)): od:
    L:=seq(add(contrib[div^j,x mod div^j],j=1..e),x=0..div^e-1); oldmini:=mini: mini:=min(L): od:
    if mini
    				

Extensions

More terms from Cyril Banderier, Sep 17 2007

A131509 a(n) = (n + 1)*(n^2 + 2)*(n^3 + 3)/6.

Original entry on oeis.org

1, 4, 33, 220, 1005, 3456, 9709, 23528, 50985, 101260, 187561, 328164, 547573, 877800, 1359765, 2044816, 2996369, 4291668, 6023665, 8303020, 11260221, 15047824, 19842813, 25849080, 33300025, 42461276, 53633529, 67155508, 83407045, 102812280, 125842981
Offset: 0

Views

Author

Alexander R. Povolotsky, Aug 13 2007, Aug 25 2007

Keywords

Comments

See also A131685(k) = smallest positive number m such that c(i) = m (i^1 + 1) (i^2 + 2) ... (i^k+ k) / k! takes integral values for all i>=0. For k=3, A131685(k)=1, which implies that this is a well defined integer sequence. - Alexander R. Povolotsky, May 18 2015

Crossrefs

Cf. A000027 (k=1), A064808 (k=2), this sequence (k=3), A129995 (k=4), A131675 (k=5), ..., A131680 (k=10).

Programs

  • Magma
    [(n^1 + 1)*(n^2 + 2)*(n^3 + 3)/6: n in [0..30]]; // Vincenzo Librandi, Apr 25 2015
    
  • Maple
    p:=proc(n,i) mul( n^j+j, j=1..i)/i!; end; [seq(p(n,3),n=0..30)];
    seq((1/6)*(n+1)*(n^2+2)*(n^3+3),n=0..25); # Emeric Deutsch, Aug 23 2007
  • Mathematica
    Table[x = 3; Product[(n^k) + k, {k, x}]/6, {n, 0, 27}] (* Michael De Vlieger, Apr 24 2015 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,4,33,220,1005,3456,9709},40] (* Harvey P. Dale, Oct 18 2016 *)
  • Maxima
    A131509(n):=(n^1 + 1)*(n^2 + 2)*(n^3 + 3)/6$
    makelist(A131509(n),n,0,30); /* Martin Ettl, Nov 03 2012 */
    
  • PARI
    vector(20,n,n--;(n+1)*(n^2+2)*(n^3+3)/3!) \\ Derek Orr, Apr 25 2015
    
  • PARI
    A131509(n)=(n+1)*(n^2+2)*(n^3+3)/6 \\ M. F. Hasler, May 02 2015

Formula

G.f.: (1 -3x +26x^2 +38x^3 +53x^4 +5x^5)/(1-x)^7. - Emeric Deutsch, Aug 23 2007

Extensions

Corrected and extended by R. J. Mathar and Emeric Deutsch, Aug 21 2007

A131675 a(n) = (Product_{i=1..5} n^i+i)/5!.

Original entry on oeis.org

1, 6, 1221, 231880, 13443885, 340203456, 4910472385, 47565216504, 342540938025, 1962871989130, 9382270310061, 38701449021984, 141297910237237, 465502930269300, 1404867737405385, 3930816255364816, 10296122969028753, 25448298063869070, 59744930256741205
Offset: 0

Views

Author

Keywords

Comments

See A131685 about well-definedness. - M. F. Hasler, May 02 2015

Programs

  • Magma
    [((n+1)*(n^2+2)*(n^3+3)*(n^4+4)*(n^5+5))/Factorial(5): n in [0..20]]; // Vincenzo Librandi, Apr 25 2015
    
  • Mathematica
    Table[x = 5; Product[(n^k) + k, {k, x}]/x!, {n, 0, 17}] (* Michael De Vlieger, Apr 24 2015 *)
    LinearRecurrence[{16,-120,560,-1820,4368,-8008,11440,-12870,11440,-8008,4368,-1820,560,-120,16,-1},{1,6,1221,231880,13443885,340203456,4910472385,47565216504,342540938025,1962871989130,9382270310061,38701449021984,141297910237237,465502930269300,1404867737405385,3930816255364816},20] (* Harvey P. Dale, Oct 04 2024 *)
  • PARI
    Vec((135*x^14 +86852*x^13 +5864611*x^12 +109724496*x^11 +782427151*x^10 +2468818430*x^9 +3704965659*x^8 +2710222344*x^7 +952834509*x^6 +152249688*x^5 +9878785*x^4 +212504*x^3 +1245*x^2 -10*x +1) / (x -1)^16 + O(x^100)) \\ Colin Barker, Apr 24 2015
    
  • PARI
    A131675(n,k=5)=prod(i=1,k,(n^i+i))/k! \\ Changing the optional 2nd argument allows one to produce A000027 (k=1), A064808 (k=2), A131509 (k=3), A129995 (k=4), A131676 (k=6), ..., A131680 (k=10). - M. F. Hasler, May 02 2015

Formula

G.f.: (135*x^14 +86852*x^13 +5864611*x^12 +109724496*x^11 +782427151*x^10 +2468818430*x^9 +3704965659*x^8 +2710222344*x^7 +952834509*x^6 +152249688*x^5 +9878785*x^4 +212504*x^3 +1245*x^2 -10*x +1) / (x -1)^16. - Colin Barker, Apr 24 2015

Extensions

Definition made explicit by M. F. Hasler, May 02 2015

A131680 a(n) = (Product_{i=1..10} n^i+i)/10!.

Original entry on oeis.org

1, 11, 54266008005, 94467113468457039310, 538562285352301951109430061, 102370328298891480707678565453456, 2171004564341130364494477279762016705, 10015112821822553484101305268477882115400, 15057116321451208557735379863635553426467625, 9594364176429126945241161642390324911313805168
Offset: 0

Views

Author

Keywords

Comments

See also A131685(k) = smallest positive number m such that c(i) = m (i^1 + 1) (i^2 + 2) ... (i^k+ k) / k! takes integral values for all i>=0: For k=10, A131685(k)=1, which implies that this is a well defined integer sequence. - Alexander R. Povolotsky, Apr 24 2015; corrected by M. F. Hasler, May 02 2015

Programs

  • Magma
    [((n+1)*(n^2+2)*(n^3+3)*(n^4+4)*(n^5+5)*(n^6+6)*(n^7+7)*(n^8+8)*(n^9+9)*(n^10+10))/Factorial(10): n in [0..10]]; // Vincenzo Librandi, Apr 25 2015
    
  • Mathematica
    Table[x = 10; Product[(n^k) + k, {k, x}]/x!, {n, 0, 9}] (* Michael De Vlieger, Apr 24 2015 *)
  • PARI
    A131680(n,k=10)=prod(i=1,k,(n^i+i))/k! \\ Changing the optional 2nd argument allows one to produce A000027 (k=1), A064808 (k=2), A131509 (k=3), A129995 (k=4), A131675(k=5), ..., A131679 (k=9). - M. F. Hasler, May 02 2015

Extensions

Definition made explicit by M. F. Hasler, May 02 2015

A131189 Numbers n >= 0 such that d(n) = (n^1 + 1)*(n^2 + 2) ... (n^14 + 14) / 14!, e(n) = (n^1 + 1)*(n^2 + 2) ... (n^15 + 15) / 15!, and f(n) = (n^1 + 1)*(n^2 + 2) ... (n^16 + 16) / 16! take nonintegral values.

Original entry on oeis.org

2, 9, 16, 23, 30, 37, 51, 58, 65, 72, 79, 86, 100, 107, 114, 121, 128, 135, 149, 156, 163, 170, 177, 184, 198, 205, 212, 219, 226, 233, 247, 254, 261, 268, 275, 282, 296, 303, 310, 317, 324, 331, 345, 352, 359, 366, 373, 380, 394, 401, 408, 415, 422, 429
Offset: 1

Views

Author

Keywords

Comments

Initial terms were calculated by Peter J. C. Moses; see comment in A129995.
From Max Alekseyev: (Start)
To check whether 14! divides (n^1 + 1)*(n^2 + 2)*(n^3 + 3)*...*(n^14 +14) it is enough to check whether every prime power q from the prime factorization of 14! divides (n^1 + 1)*(n^2 + 2)*(n^3 + 3)*...*(n^14 + 14) for n=0,1,...,q-1.
Note that 14! = 2^11 * 3^5 * 5^2 * 7^2 * 11 * 13.
It is easy to verify that:
i) 2^11 divides (n^1 + 1)*(n^2 + 2)*(n^3 + 3)*...*(n^14 + 14) for every n=0,1,...,2^11-1;
ii) 3^5 divides (n^1 + 1)*(n^2 + 2)*(n^3 + 3)*...*(n^14 + 14) for every n=0,1,...,3^5-1;
iii) 7^2 divides (n^1 + 1)*(n^2 + 2)*(n^3 + 3)*...*(n^14 + 14) for every n=0,1,...,7^2-1,
except for n=2, 9, 16, 23, 30, 37 (i.e., n of the form 7m+2 but not 49m+44);
iv) 11 divides (n^1 + 1)*(n^2 + 2)*(n^3 + 3)*...*(n^14 + 14) for every n=0,1,...,11-1;
v) 13 divides (n^1 + 1)*(n^2 + 2)*(n^3 + 3)*...*(n^14 + 14) for every n=0,1,...,13-1.
This proves that for k=14, a(n) is nonintegral only for n in the set difference { 7m+2} \ { 49m+44 }.
In simple cases like { 7m+2 } \ { 49m+44 }, one can get an explicit formula.
Note that { 7m+2 } \ { 49m+44 } can be viewed as the arithmetic sequence 7m + 2 where m cannot be 6 modulo 7.
The number of nonnegative integers equal to 6 modulo 7 not exceeding m is equal to floor((m+1)/7).
Therefore in our sequence the (m-floor((m+1)/7))-th term equals 7m+2 when m is minimum possible.
Let us find the minimum m satisfying m - floor((m+1)/7) = n.
Let t = (m+1) mod 7. Then m - ((m+1)-t)/7 = n or 6m+t-1 = 7n, implying that m = (7n-t+1)/6.
Depending on the value of t we have m = floor((7n+1)/6) or m = floor((7n+1)/6) - 1.
Since m must be the minimum possible, we have the second case when floor((7n+1)/6) mod 7 > (7n+1) mod 6; and the first case otherwise.
In other words, the explicit formula for m is m = floor((7n+1)/6) - 1, if floor((7n+1)/6) mod 7 > (7n+1) mod 6; m = floor((7n+1)/6), otherwise.
We can also consider all possible residues of n modulo 6*7 and find out that the inequality floor((7n+1)/6) mod 7 > (7n+1) mod 6 holds for n mod 42 in { 5, 11, 17, 23, 29, 35, 41 } or alternatively n mod 6 = 5.
Therefore m = floor((7n+1)/6) - 1, if n mod 6 = 5; m = floor((7n+1)/6), otherwise.
So for the sequence {2,9,16,23,30,37,51,58,65,72,79,86,100,...} we can give formula a(n) = 7*floor((7n+1)/6) - 5, if n mod 6 = 5; a(n) = 7*floor((7n+1)/6) + 2, otherwise.
(End)

Programs

  • Maple
    a:= n-> `if`((n-1) mod 6 = 5, 7*floor((7*n-6)/6)-5, 7*floor((7*n-6)/6)+2):
    seq(a(n), n=1..80);  # Alois P. Heinz, Aug 08 2013
  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 1, -1}, {2, 9, 16, 23, 30, 37, 51}, 50] (* G. C. Greubel, Feb 19 2017 *)
  • PARI
    x='x+O('x^50); Vec(x*(12*x^6+7*x^5+7*x^4+7*x^3+7*x^2+7*x+2) / ((x-1)^2*(x+1)*(x^2-x+1)*(x^2+x+1))) \\ G. C. Greubel, Feb 19 2017

Formula

a(n) = 7*floor((7n+1)/6) - 5, if n mod 6 = 5; a(n) = 7*floor((7n+1)/6) + 2, otherwise. For e(n) and g(n), proof is similar; see also the comments. - Max Alekseyev
G.f.: x*(12*x^6+7*x^5+7*x^4+7*x^3+7*x^2+7*x+2) / ((x-1)^2*(x+1)*(x^2-x+1)*(x^2+x+1)). - Colin Barker, Aug 08 2013

Extensions

More terms from Colin Barker, Aug 08 2013

A131191 Numbers n>=0 such that d(n) = (n^1 + 1) (n^2 + 2) ... (n^22 + 22) / 22!, e(n) = (n^1 + 1) (n^2 + 2) ... (n^23 + 23) / 23!, and f(n) = (n^1 + 1) (n^2 + 2) ... (n^24 + 24) / 24! take nonintegral values.

Original entry on oeis.org

7, 18, 29, 40, 51, 62, 73, 84, 95, 106, 128, 139, 150, 161, 172, 183, 194, 205, 216, 227, 249, 260, 271, 282, 293, 304, 315, 326, 337, 348, 370, 381, 392, 403, 414, 425, 436, 447, 458, 469, 491, 502, 513, 524, 535, 546, 557, 568, 579, 590, 612, 623, 634, 645, 656, 667, 678, 689, 700, 711, 733, 744
Offset: 1

Views

Author

Keywords

Comments

If n is in this sequence, then so is n+121. - Max Alekseyev, Feb 02 2015

Crossrefs

Formula

Notice that 22! = 2^19 * 3^9 * 5^4 * 7^3 * 11^2 * 13 * 17 * 19. All these prime powers divide (n^1 + 1)*(n^2 + 2)*(n^3 +3)*...*(n^22 + 22), except for 11^2. 11^2 does not divide (n^1 + 1)*(n^2 + 2)*(n^3 + 3)*...*(n^22 + 22) for n = 7, 18, 29, 40, 51, 62, 73, 84, 95, 106 modulo 121. That is, d(n) is nonintegral for n the form 11m+7 but not 121m+117, and so are e(n) and f(n). - Max Alekseyev, Nov 10 2007

Extensions

Initial terms were calculated by Peter J. C. Moses; see comment in A129995.
More terms from Max Alekseyev, Feb 02 2015

A131676 a(n) = (Product_{i=1..6} n^i+i) / 6!.

Original entry on oeis.org

1, 7, 14245, 28405300, 9191136045, 886286703456, 38188743738145, 932714257963020, 14966184483875625, 173860405001195185, 1563721100613810061, 11427034989921521488, 70319024498214551605, 374482754394635213250, 1763001772206469563945, 7462412915610398239816
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A131685.

Programs

Formula

G.f.: (1 - 15*x + 14322*x^2 + 28091987*x^3 + 8569506575*x^4 + 690621422337*x^5 + 20769948618958*x^6 + 283347184706283*x^7 + 1969675285865562*x^8 + 7493939424807955*x^9 + 16292973927985678*x^10 + 20712738704664489*x^11 + 15498276638623618*x^12 + 6765765599122915*x^13 + 1679542499740050*x^14 + 226176197184209*x^15 + 15278037714093*x^16 + 454493699352*x^17 + 4732512736*x^18 + 10869320*x^19 + 1575*x^20)/(1 - x)^22. - M. F. Hasler, May 02 2015

Extensions

Definition made explicit by M. F. Hasler, May 02 2015

A131679 a(n) = (Product_{i=1..9} n^i+i) / 9!.

Original entry on oeis.org

1, 10, 524816325, 15995379784360900, 5136081211768056707885, 104827108835105429096703456, 359044402823940369662885183425, 354548318931625565271233374406000, 140230322081790179721500725877795625, 27516367648544953143193233240569070880, 3102623679344954347223585172112606310061
Offset: 0

Views

Author

Keywords

Comments

See A131685 about well-definedness. - M. F. Hasler, May 02 2015

Programs

Extensions

Definition made explicit by M. F. Hasler, May 02 2015

A131190 Numbers n>=0 such that d(n) = (n^1 + 1) (n^2 + 2) ... (n^25 + 25) / 25! is nonintegral.

Original entry on oeis.org

2, 7, 12, 18, 22, 27, 29, 37, 40, 47, 51, 52, 62, 72, 73, 77, 84, 87, 95, 97, 102, 106, 112, 122, 127, 128, 137, 139, 147, 150, 152, 161, 162, 172, 177, 183, 187, 194, 197, 202, 205, 212, 216, 222, 227, 237, 247, 249, 252, 260, 262, 271, 272, 277, 282, 287, 293, 297, 302, 304, 312, 315, 322, 326, 327, 337
Offset: 1

Views

Author

Keywords

Comments

If n is in this sequence the so is n+6050. - Max Alekseyev, Feb 02 2015

Crossrefs

Programs

  • PARI
    { is_A131190(n) = setsearch([2,12,22,27,37,47],n%50) || ( (n%11)==7 && (n%121)!=117 ) } /* Max Alekseyev, Feb 02 2015 */

Formula

Notice that 25! = 2^22 * 3^10 * 5^6 * 7^3 * 11^2 * 13 * 17 * 19 * 23. The value of (n^1+1)(n^2+2)...(n^25+25) is always divisible by all these prime powers, except 5^6 and 11^2. There is no divisibility by 5^6 for n in {50m+2, 50m+12, 50m+22, 50m+27, 50m+37, 50m+47} and by 11^2 for n in {11m+7} \ {121m+117}. Therefore, the sequence is the union {50m+2} U {50m+12} U {50m+22} U {50m+27} U {50m+37} U {50m+47} U ( {11m+7} \ {121m+117} ). - Max Alekseyev, Nov 10 2007

Extensions

Initial terms were calculated by Peter J. C. Moses; see comment in A129995.
More terms from Max Alekseyev, Feb 02 2015
Showing 1-10 of 13 results. Next