cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A064937 Nonprimes k such that gcd(k, prime(k)^2 - 1) is 1.

Original entry on oeis.org

1, 25, 49, 55, 77, 119, 133, 143, 155, 161, 169, 185, 187, 203, 209, 217, 221, 235, 247, 275, 287, 289, 295, 301, 325, 329, 361, 365, 371, 377, 391, 403, 407, 415, 425, 427, 437, 451, 455, 469, 473, 485, 493, 497, 505, 511, 517, 527, 529, 539, 553, 559, 583
Offset: 1

Views

Author

Robert G. Wilson v, Oct 26 2001

Keywords

Crossrefs

Cf. A064830.

Programs

  • Mathematica
    Select[ Range[600], !PrimeQ[ # ] && GCD[ #, Prime[ # ]^2 - 1] == 1 & ]
  • PARI
    { n=0; for (m=1, 10^9, if (isprime(m), next); if (gcd(m, prime(m)^2 - 1) == 1, write("b064937.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Sep 30 2009

A064938 Nonprimes k such that k divides prime(k)^2 - 1.

Original entry on oeis.org

1, 4, 6, 8, 10, 12, 14, 20, 24, 42, 48, 60, 63, 70, 72, 80, 84, 108, 120, 124, 126, 153, 156, 182, 240, 246, 264, 286, 327, 372, 374, 440, 492, 516, 552, 1008, 1053, 1664, 1941, 2160, 2494, 3048, 3741, 4116, 4136, 4144, 4152, 5106, 5698, 6012, 6458, 6459
Offset: 1

Views

Author

Robert G. Wilson v, Oct 26 2001

Keywords

Crossrefs

Cf. A064830.

Programs

  • Mathematica
    Select[ Range[10^4], !PrimeQ[ # ] && GCD[ #, Prime[ # ]^2 - 1] == # & ]
  • PARI
    { default(primelimit, 4294965247); n=0; for (m=1, 10^9, if (isprime(m), next); if (gcd(m, prime(m)^2 - 1) == m, write("b064938.txt", n++, " ", m); if (n==160, return)) ) } \\ Harry J. Smith, Sep 30 2009

A064936 Primes p such that gcd(p, prime(p)^2 - 1) does not equal 1.

Original entry on oeis.org

2, 3, 5, 181, 40087, 251737, 335276334037181, 115423110870118057, 115423110870118561
Offset: 1

Views

Author

Robert G. Wilson v, Oct 26 2001

Keywords

Comments

No further terms up to 41161739. - Harvey P. Dale, Dec 23 2011
No further terms up to 250000000. - Sean A. Irvine, Aug 01 2023
From Jason Yuen, Apr 21 2024: (Start)
Primes p such that prime(p)^2 == 1 (mod p).
Prime terms of A023143 or A045924.
No further terms up to 4*10^19. (End)

Examples

			5 belongs in the sequence because gcd(5, P_5^2 -1) = gcd(5, 120) = 5.
		

Crossrefs

Programs

  • Mathematica
    Do[ If[ GCD[ Prime[n], Prime[ Prime[n]]^2 - 1] != 1, Print[ Prime[n]] ], {n, 1, 10^6} ]
Showing 1-3 of 3 results.