cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064840 a(n) = tau(n)*sigma(n).

Original entry on oeis.org

1, 6, 8, 21, 12, 48, 16, 60, 39, 72, 24, 168, 28, 96, 96, 155, 36, 234, 40, 252, 128, 144, 48, 480, 93, 168, 160, 336, 60, 576, 64, 378, 192, 216, 192, 819, 76, 240, 224, 720, 84, 768, 88, 504, 468, 288, 96, 1240, 171, 558, 288, 588, 108, 960, 288, 960, 320, 360
Offset: 1

Views

Author

Vladeta Jovovic, Oct 25 2001

Keywords

Comments

Dirichlet convolution of A034761 with (the Dirichlet inverse of A037213). - R. J. Mathar, Feb 11 2011

Examples

			For n = 10, a(10) = sigma(10) * tau(10) = 18 * 4 = 72. - _Indranil Ghosh_, Jan 20 2017
		

Crossrefs

Programs

  • Magma
    [ NumberOfDivisors(n)*SumOfDivisors(n) : n in [1..40]];
    
  • Maple
    with(numtheory): seq(sigma(n)*tau(n), n=1..58) ; # Zerinvary Lajos, Jun 04 2008
  • Mathematica
    Table[ DivisorSigma[0, n] * DivisorSigma[1, n], {n, 1, 58}] (* Jean-François Alcover, Mar 26 2013 *)
  • PARI
    { for (n=1, 1000, a=numdiv(n)*sigma(n); write("b064840.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 28 2009

Formula

Multiplicative with a(p^e) = (p^(e+1)-1)*(e+1)/(p-1). a(n) = (1/2)*Sum_{i|n, j|n} (i+j).
Dirichlet g.f. (zeta(s)*zeta(s-1))^2/zeta(2s-1). - R. J. Mathar, Feb 11 2011
Sum_{k=1..n} a(k) ~ Pi^4 * n^2 / (144*Zeta(3)) * (2*log(n) - 1 + 4*gamma - 4*Zeta'(3)/Zeta(3) + 24*Zeta'(2)/Pi^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 31 2019