cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A067151 Number of regions in regular n-gon which are quadrilaterals (4-gons) when all its diagonals are drawn.

Original entry on oeis.org

0, 0, 6, 7, 24, 36, 90, 132, 168, 234, 378, 600, 672, 901, 954, 1444, 1580, 2520, 2860, 2990, 3696, 4800, 5070, 6750, 7644, 9309, 7920, 12927, 12896, 15576, 16898, 20475, 18684, 25382, 27246, 30966, 32760, 37064, 37170, 45838, 47300, 55350, 60996, 69231, 66864, 80507, 87550, 98124, 103272
Offset: 4

Views

Author

Sascha Kurz, Jan 06 2002

Keywords

Examples

			a(6)=6 because the 6 regions around the center are quadrilaterals.
		

References

  • B. Poonen and M. Rubinstein, Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics, Vol. 11, pp. 135-156.

Crossrefs

Formula

Conjecture: a(n) ~ c * n^4. Is c = 1/64 ? - Bill McEachen, Mar 03 2024

Extensions

Title clarified, a(47) and above by Scott R. Shannon, Dec 04 2021

A064867 The minimal number which has multiplicative persistence 3 in base n.

Original entry on oeis.org

26, 63, 68, 23, 27, 31, 35, 39, 43, 46, 50, 54, 58, 62, 66, 69, 73, 77, 81, 85, 89, 92, 96, 100, 104, 108, 112, 115, 119, 123, 127, 131, 135, 138, 142, 146, 150, 154, 158, 161, 165, 169, 173, 177, 181, 184, 188, 192
Offset: 3

Views

Author

Sascha Kurz, Oct 08 2001

Keywords

Comments

The persistence of a number is the number of times you need to multiply the digits together before reaching a single digit.

Examples

			a(3) = 26 because 26 = [222]->[22]->[11]->[1] and no fewer n has persistence 3 in base 3.
		

Crossrefs

Programs

  • Mathematica
    With[{m = 3}, Table[Block[{k = 1}, While[Length@ FixedPointList[Times @@ IntegerDigits[#, n] &, k, 100] != m + 2, k++]; k], {n, 3, 5}]]~Join~Array[4 # - Floor[#/6] &, 45, 6] (* Michael De Vlieger, Aug 30 2021 *)

Formula

a(n) = 4*n-floor(n/6) for n > 5.
From Chai Wah Wu, Mar 07 2025: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n > 12.
G.f.: x^3*(48*x^9 - x^8 - 33*x^7 - 22*x^6 + 4*x^5 + 4*x^4 - 45*x^3 + 5*x^2 + 37*x + 26)/(x^7 - x^6 - x + 1). (End)

A064868 The minimal number which has multiplicative persistence 4 in base n.

Original entry on oeis.org

2344, 172, 131, 174, 52, 77, 75, 83, 75, 81, 89, 95, 101, 104, 110, 133, 143, 127, 133, 119, 124, 129, 134, 139, 144, 149, 154, 159, 164, 169, 174, 179, 184, 189, 194, 199, 204, 209, 214, 219, 224, 229, 234, 238, 243, 248, 253, 258, 263, 268, 273, 278, 283
Offset: 5

Views

Author

Sascha Kurz, Oct 09 2001

Keywords

Comments

The persistence of a number is the number of times you need to multiply the digits together before reaching a single digit. a(3) and a(4) do not seem to exist.

Examples

			a(6) = 172 because 172 = [444]->[144]->[24]->[12]->[2] and no lesser n has persistence 4 in base 6.
		

Crossrefs

Programs

  • Mathematica
    With[{m = 4, r = 24}, Table[Block[{k = 1}, While[Length@ FixedPointList[Times @@ IntegerDigits[#, n] &, k] != m + 2, k++]; k], {n, m + 1, r}]~Join~Array[(m + 1) # - Floor[#/r] &, 34, r + 1]] (* Michael De Vlieger, Aug 30 2021 *)
  • PARI
    pers(nn, b) = {ok = 0; p = 0; until (ok, d = digits(nn, b); if (#d == 1, ok = 1, p++); nn = prod(k=1, #d, d[k]); if (nn == 0, ok = 1);); return (p);}
    a(n) = {i=0; while (pers(i, n) != 4, i++); return (i);} \\ Michel Marcus, Jun 30 2013

Formula

a(n) = 5*n-floor(n/24) for n > 23.
From Chai Wah Wu, Mar 07 2025: (Start)
a(n) = a(n-1) + a(n-24) - a(n-25) for n > 48.
G.f.: x^5*(18*x^43 - x^42 + 21*x^41 - 5*x^40 - 18*x^39 - x^38 + 2*x^37 - x^36 - x^35 - 3*x^34 - x^33 + 13*x^32 - 3*x^31 + 7*x^30 - 20*x^29 + 127*x^28 - 38*x^27 + 46*x^26 + 2177*x^25 - 2339*x^24 + 5*x^23 + 5*x^22 + 5*x^21 + 5*x^20 - 14*x^19 + 6*x^18 - 16*x^17 + 10*x^16 + 23*x^15 + 6*x^14 + 3*x^13 + 6*x^12 + 6*x^11 + 8*x^10 + 6*x^9 - 8*x^8 + 8*x^7 - 2*x^6 + 25*x^5 - 122*x^4 + 43*x^3 - 41*x^2 - 2172*x + 2344)/(x^25 - x^24 - x + 1). (End)

Extensions

Example modified by Harvey P. Dale, Oct 19 2022

A067152 Number of pentagonal regions in regular n-gon with all diagonals drawn.

Original entry on oeis.org

1, 0, 7, 0, 18, 10, 44, 0, 117, 98, 150, 128, 357, 72, 646, 580, 903, 814, 1564, 840, 2050, 2106, 2862, 2128, 3625, 1440, 5146, 4896, 6105, 5542, 8190, 7452, 10471, 10184, 14235, 13160, 16564, 11382, 21156, 20548, 24300, 23920, 30362, 26112, 35231, 32700, 40341, 38532, 51834, 42012, 58905
Offset: 5

Views

Author

Sascha Kurz, Jan 06 2002

Keywords

Examples

			a(5) = 1 because only the center-region is a pentagon.
		

References

  • B. Poonen and M. Rubinstein, Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics, Vol. 11, pp. 135-156.

Crossrefs

Extensions

a(49) and beyond from Scott R. Shannon, Dec 04 2021
Definition clarified by N. J. A. Sloane, Jun 09 2025

A067153 Number of hexagonal regions in regular n-gon with all diagonals drawn.

Original entry on oeis.org

0, 0, 0, 9, 0, 22, 0, 39, 0, 105, 48, 136, 18, 190, 120, 462, 66, 644, 72, 875, 390, 1296, 952, 1595, 450, 1891, 1472, 3201, 2346, 3640, 2124, 4773, 2698, 5577, 4000, 7298, 3444, 7912, 6336, 10980, 6532, 10904, 7824, 14651, 12150, 16779, 13260, 20299, 13176, 21560, 18200, 26961, 21634, 29500
Offset: 6

Views

Author

Sascha Kurz, Jan 06 2002

Keywords

Examples

			a(9)=9 because drawing the regular 9-gon with all its diagonals yields 9 hexagons.
		

References

  • B. Poonen and M. Rubinstein, Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics, Vol. 11, pp. 135-156.

Crossrefs

Extensions

a(54) and beyond from Scott R. Shannon, Dec 04 2021
Definition clarified by N. J. A. Sloane, Jun 09 2025

A067154 Number of heptagonal regions in regular n-gon with all diagonals drawn.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 15, 0, 17, 18, 57, 0, 21, 44, 115, 0, 150, 104, 81, 112, 116, 0, 155, 224, 429, 306, 560, 180, 555, 836, 663, 640, 1025, 378, 1419, 660, 1710, 1564, 1786, 1200, 2352, 1050, 2754, 2236, 2597, 2700, 3410, 2240, 3078, 3190, 4602, 1860, 5551, 4898, 6363, 5056, 8515, 4950
Offset: 7

Views

Author

Sascha Kurz, Jan 06 2002

Keywords

Examples

			a(7)=1 because the center-region is a heptagon.
		

References

  • B. Poonen and M. Rubinstein, Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics, Vol. 11, pp. 135-156.

Crossrefs

Extensions

a(62) and beyond from Scott R. Shannon, Dec 04 2021
Definition clarified by N. J. A. Sloane, Jun 09 2025

A067155 Number of octagonal regions in regular n-gon with all diagonals drawn.

Original entry on oeis.org

0, 0, 0, 0, 0, 13, 0, 0, 0, 34, 0, 38, 20, 0, 44, 23, 0, 50, 26, 108, 28, 145, 0, 217, 0, 264, 102, 315, 72, 407, 190, 546, 200, 656, 42, 903, 528, 810, 598, 1175, 288, 1078, 550, 1479, 780, 1166, 486, 1705, 784, 2451, 1276, 3068, 960, 3172, 1860, 4347, 2432, 4225, 2376, 4958, 2992, 3519, 2380
Offset: 8

Views

Author

Sascha Kurz, Jan 06 2002

Keywords

Examples

			a(13)=13 because drawing the regular 13-gon and all its diagonals yields 13 octagons.
		

References

  • B. Poonen and M. Rubinstein, Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics, Vol. 11, pp. 135-156.

Crossrefs

Extensions

a(65) and beyond from Scott R. Shannon, Dec 04 2021
Definition clarified by Hugo Pfoertner, Dec 04 2021

A067156 Number of regions in regular n-gon which are 9-gons.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 35, 0, 0, 0, 0, 0, 123, 0, 0, 88, 45, 0, 0, 0, 0, 0, 51, 0, 0, 0, 165, 0, 114, 0, 118, 120, 61, 124, 0, 192, 195, 66, 67, 272, 138, 0, 568, 360, 146, 222, 600, 0, 231, 156, 237, 800, 567, 410, 664, 84, 255, 344, 174
Offset: 9

Views

Author

Sascha Kurz, Jan 06 2002

Keywords

Examples

			a(9)=1 because drawing the regular 9-gon with all its diagonals yields 1 9-gon.
		

References

  • B. Poonen and M. Rubinstein, Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics, Vol. 11, pp. 135-156.

Crossrefs

Extensions

a(86) and beyond by Scott R. Shannon, Dec 04 2021

A067157 Number of regions in regular n-gon which are 10-gons.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 87, 0, 62, 0, 0, 0, 0, 0, 74, 0, 0, 0, 41, 0, 0, 44, 0, 0, 235, 48, 147, 100, 51, 0, 159, 54, 110, 56, 114, 58, 177, 0, 183, 62, 378, 256, 195, 0, 134, 136, 621, 210, 71, 144, 438, 222, 750, 76, 385, 78, 1185, 80, 648, 82, 830, 336, 935
Offset: 10

Views

Author

Sascha Kurz, Jan 06 2002

Keywords

Examples

			a(29)=87 because drawing the regular 29-gon with all its diagonals yields 87 10-gons.
		

References

  • B. Poonen and M. Rubinstein, Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics, Vol. 11, pp. 135-156.

Crossrefs

Extensions

a(83) and beyond by Scott R. Shannon, Dec 04 2021

A067158 Number of regions in regular n-gon which are 11-gons.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 29, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 71, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 99, 0, 0, 102, 103, 0, 0, 0, 0, 108, 0
Offset: 11

Views

Author

Sascha Kurz, Jan 06 2002

Keywords

Examples

			a(11)=1 because drawing the regular 11-gon with all its diagonals yields 1 11-gon.
		

References

  • B. Poonen and M. Rubinstein, Number of Intersection Points Made by the Diagonals of a Regular Polygon, SIAM J. Discrete Mathematics, Vol. 11, pp. 135-156.

Crossrefs

Extensions

a(110) and beyond by Scott R. Shannon, Dec 04 2021
Showing 1-10 of 16 results. Next