cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064900 Semiprimes p1*p2 such that p2 > p1 and p2 mod p1 = 2.

Original entry on oeis.org

15, 33, 35, 51, 69, 85, 87, 123, 141, 143, 159, 161, 177, 185, 213, 235, 249, 259, 267, 303, 321, 323, 335, 339, 393, 411, 447, 485, 501, 519, 533, 535, 537, 553, 573, 591, 635, 681, 685, 699, 717, 749, 753, 771, 785, 789, 807, 835, 843, 869, 871, 879, 899
Offset: 1

Views

Author

Patrick De Geest, Oct 13 2001

Keywords

Crossrefs

Cf. A001358 (p2 mod p1 = 0), A064899-A064911.

Programs

  • Mathematica
    okQ[n_] := Module[{p, e}, {p, e} = Transpose[FactorInteger[n]]; e == {1, 1} && Mod[p[[2]], p[[1]]] == 2]; Select[Range[1000], okQ]
    Select[Range[1000],PrimeOmega[#]==2&&Mod[FactorInteger[#][[;;,1]][[2]],FactorInteger[#][[;;,1]][[1]]]==2&]//Quiet (* Harvey P. Dale, Jan 09 2025 *)
  • PARI
    isok(n) = (bigomega(n)==2) && (f=factor(n)) && (#f~ == 2) && ((f[2,1] % f[1,1]) == 2); \\ Michel Marcus, May 20 2017

Extensions

Name clarified by Sean A. Irvine, Jul 31 2023