A064907 Semiprimes p1*p2 such that p2 mod p1 = 9, with p2 > p1.
341, 583, 731, 793, 893, 1067, 1469, 1793, 1807, 1943, 2201, 2323, 2483, 2519, 2761, 3043, 3071, 3487, 3497, 3781, 4213, 4439, 4511, 4777, 4841, 4849, 4939, 5497, 5809, 5933, 5947, 6511, 6539, 6989, 7093, 7117, 7391, 7493, 7601, 7613, 7783, 7891, 7967
Offset: 1
Keywords
Links
- John Cerkan, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
spQ[n_]:=Module[{fi=FactorInteger[n][[All,1]]},PrimeOmega[n]==2&&Mod[ fi[[2]],fi[[1]]]==9]; Select[Range[8000],spQ]//Quiet (* Harvey P. Dale, Aug 02 2019 *)
-
PARI
isok(n) = my(f = factor(n)); (#f~ == 2) && (vecmax(f[,2]) < 2) && ((f[2,1] % f[1,1]) == 9); \\ Michel Marcus, Apr 16 2018
-
Python
from sympy import factorint def is_A064907(n): f = factorint(n) return (sum([f[i] for i in f]) == 2) and (max(f) % min(f) == 9) def list_A064907(cnt): inx = 0 n = 1 an = [] while inx < cnt: if is_A064907(n): an.append(n) inx += 1 n += 2 return an #John Cerkan, Apr 14 2018
Extensions
Offset changed by John Cerkan, Apr 12 2018