cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064907 Semiprimes p1*p2 such that p2 mod p1 = 9, with p2 > p1.

Original entry on oeis.org

341, 583, 731, 793, 893, 1067, 1469, 1793, 1807, 1943, 2201, 2323, 2483, 2519, 2761, 3043, 3071, 3487, 3497, 3781, 4213, 4439, 4511, 4777, 4841, 4849, 4939, 5497, 5809, 5933, 5947, 6511, 6539, 6989, 7093, 7117, 7391, 7493, 7601, 7613, 7783, 7891, 7967
Offset: 1

Views

Author

Patrick De Geest, Oct 13 2001

Keywords

Crossrefs

Cf. A001358 (p2 mod p1 = 0), A064899-A064911.

Programs

  • Mathematica
    spQ[n_]:=Module[{fi=FactorInteger[n][[All,1]]},PrimeOmega[n]==2&&Mod[ fi[[2]],fi[[1]]]==9]; Select[Range[8000],spQ]//Quiet (* Harvey P. Dale, Aug 02 2019 *)
  • PARI
    isok(n) = my(f = factor(n)); (#f~ == 2) && (vecmax(f[,2]) < 2) && ((f[2,1] % f[1,1]) == 9); \\ Michel Marcus, Apr 16 2018
  • Python
    from sympy import factorint
    def is_A064907(n):
        f = factorint(n)
        return (sum([f[i] for i in f]) == 2) and (max(f) % min(f) == 9)
    def list_A064907(cnt):
        inx = 0
        n = 1
        an = []
        while inx < cnt:
            if is_A064907(n):
                an.append(n)
                inx += 1
            n += 2
        return an #John Cerkan, Apr 14 2018
    

Extensions

Offset changed by John Cerkan, Apr 12 2018