cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064985 Number of partitions of n into factorial parts ( 0! allowed ).

Original entry on oeis.org

1, 2, 4, 6, 9, 12, 17, 22, 29, 36, 45, 54, 66, 78, 93, 108, 126, 144, 166, 188, 214, 240, 270, 300, 336, 372, 414, 456, 504, 552, 608, 664, 728, 792, 864, 936, 1018, 1100, 1192, 1284, 1386, 1488, 1602, 1716, 1842, 1968, 2106, 2244, 2397, 2550, 2718, 2886
Offset: 0

Views

Author

Naohiro Nomoto, Oct 30 2001

Keywords

Examples

			a(3) = 6 because we can write 3 = 2!+1! = 2!+0! = 1!+1!+1! = 0!+0!+0! = 1!+1!+0! = 1!+0!+0!.
G.f.: 1/(1-x) + x/(1-x)^2 + x^2/((1-x)^2*(1-x^2)) + x^6/((1-x)^2*(1-x^2)*(1-x^6)) + ... . - _Seiichi Manyama_, Oct 12 2019
		

Crossrefs

Cf. A064986.

Programs

  • Mathematica
    nn=51;CoefficientList[Series[Product[1/(1-x^(i!)),{i,0,10}],{x,0,nn}],x] (* Geoffrey Critzer, Sep 29 2013 *)
    Table[Length@IntegerPartitions[n, All, Factorial[Range[0, 6]]], {n, 0, 51}] (* Robert Price, Jun 04 2020 *)
  • PARI
    N=66; x='x+O('x^N); m=1; while(N>=m!, m++); Vec(1/prod(k=0, m-1, 1-x^k!)) \\ Seiichi Manyama, Oct 13 2019
    
  • PARI
    N=66; x='x+O('x^N); m=1; while(N>=m!, m++); Vec(1/(1-x)+sum(i=1, m-1, x^i!/prod(j=0, i, 1-x^j!))) \\ Seiichi Manyama, Oct 13 2019

Formula

G.f.: 1/(Product_{i>=1} (1-x^(i!)))/(1-x).
G.f.: 1/(1-x) + Sum_{n>0} x^(n!) / Product_{k=0..n} (1 - x^(k!)). - Seiichi Manyama, Oct 12 2019

Extensions

More terms from Vladeta Jovovic and Don Reble, Nov 02 2001