A064985 Number of partitions of n into factorial parts ( 0! allowed ).
1, 2, 4, 6, 9, 12, 17, 22, 29, 36, 45, 54, 66, 78, 93, 108, 126, 144, 166, 188, 214, 240, 270, 300, 336, 372, 414, 456, 504, 552, 608, 664, 728, 792, 864, 936, 1018, 1100, 1192, 1284, 1386, 1488, 1602, 1716, 1842, 1968, 2106, 2244, 2397, 2550, 2718, 2886
Offset: 0
Examples
a(3) = 6 because we can write 3 = 2!+1! = 2!+0! = 1!+1!+1! = 0!+0!+0! = 1!+1!+0! = 1!+0!+0!. G.f.: 1/(1-x) + x/(1-x)^2 + x^2/((1-x)^2*(1-x^2)) + x^6/((1-x)^2*(1-x^2)*(1-x^6)) + ... . - _Seiichi Manyama_, Oct 12 2019
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A064986.
Programs
-
Mathematica
nn=51;CoefficientList[Series[Product[1/(1-x^(i!)),{i,0,10}],{x,0,nn}],x] (* Geoffrey Critzer, Sep 29 2013 *) Table[Length@IntegerPartitions[n, All, Factorial[Range[0, 6]]], {n, 0, 51}] (* Robert Price, Jun 04 2020 *)
-
PARI
N=66; x='x+O('x^N); m=1; while(N>=m!, m++); Vec(1/prod(k=0, m-1, 1-x^k!)) \\ Seiichi Manyama, Oct 13 2019
-
PARI
N=66; x='x+O('x^N); m=1; while(N>=m!, m++); Vec(1/(1-x)+sum(i=1, m-1, x^i!/prod(j=0, i, 1-x^j!))) \\ Seiichi Manyama, Oct 13 2019
Formula
G.f.: 1/(Product_{i>=1} (1-x^(i!)))/(1-x).
G.f.: 1/(1-x) + Sum_{n>0} x^(n!) / Product_{k=0..n} (1 - x^(k!)). - Seiichi Manyama, Oct 12 2019
Extensions
More terms from Vladeta Jovovic and Don Reble, Nov 02 2001