cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A064986 Number of partitions of n into factorial parts (0! not allowed).

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 9, 9, 12, 12, 15, 15, 18, 18, 22, 22, 26, 26, 30, 30, 36, 36, 42, 42, 48, 48, 56, 56, 64, 64, 72, 72, 82, 82, 92, 92, 102, 102, 114, 114, 126, 126, 138, 138, 153, 153, 168, 168, 183, 183, 201, 201, 219, 219, 237, 237, 258, 258, 279, 279
Offset: 0

Views

Author

Naohiro Nomoto, Oct 30 2001

Keywords

Comments

a(2*n+1) = a(2*n) = A117930(n). [Reinhard Zumkeller, Dec 04 2011]

Examples

			a(3) = 2 because we can write 3 = 2!+1! = 1!+1!+1!.
a(10) = 9 because 10 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 2 = 1 + 1 + 1 + 1 + 1 + 1 + 2 + 2 = 1 + 1 + 1 + 1 + 2 + 2 + 2 = 1 + 1 + 2 + 2 + 2 + 2 = 2 + 2 + 2 + 2 + 2 = 1 + 1 + 1 + 1 + 6 = 1 + 1 + 2 + 6 = 2 + 2 + 6.
		

Crossrefs

Bisection gives A090632.

Programs

  • Haskell
    a064986 = p (tail a000142_list) where
       p _          0             = 1
       p fs'@(f:fs) m | m < f     = 0
                      | otherwise = p fs' (m - f) + p fs m
    -- Reinhard Zumkeller, Dec 04 2011
    
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0 || i==1, 1, b[n, i-1] + If[i!>n, 0, b[n-i!, i]]];
    c[n_] := Module[{i}, For[i = 1, i!<2n, i++]; b[2n, i]];
    a[n_] := If[OddQ[n], c[(n-1)/2], c[n/2]];
    a /@ Range[0, 100] (* Jean-François Alcover, Feb 04 2020, after Alois P. Heinz in A117930 *)
    Table[Length@IntegerPartitions[n, All, Factorial[Range[6]]], {n, 0, 63}] (* Robert Price, Jun 04 2020 *)
  • PARI
    N=66; x='x+O('x^N); m=1; while(N>=m!, m++); Vec(1/prod(k=1, m-1, 1-x^k!)) \\ Seiichi Manyama, Oct 13 2019
    
  • PARI
    N=66; x='x+O('x^N); m=1; while(N>=m!, m++); Vec(1+sum(i=1, m-1, x^i!/prod(j=1, i, 1-x^j!))) \\ Seiichi Manyama, Oct 13 2019

Formula

G.f.: 1/Product_{i>=1} (1-x^(i!)).
G.f.: 1 + Sum_{n>0} x^(n!) / Product_{k=1..n} (1 - x^(k!)). - Seiichi Manyama, Oct 12 2019
G.f.: 1 + x/(1-x) + x^2/((1-x)*(1-x^2)) + x^6/((1-x)*(1-x^2)*(1-x^6)) + ... . - Seiichi Manyama, Oct 12 2019

Extensions

More terms from Vladeta Jovovic and Don Reble, Nov 02 2001

A133041 Sum of n and partition number of n.

Original entry on oeis.org

1, 2, 4, 6, 9, 12, 17, 22, 30, 39, 52, 67, 89, 114, 149, 191, 247, 314, 403, 509, 647, 813, 1024, 1278, 1599, 1983, 2462, 3037, 3746, 4594, 5634, 6873, 8381, 10176, 12344, 14918, 18013, 21674, 26053, 31224, 37378, 44624, 53216
Offset: 0

Views

Author

Omar E. Pol, Oct 29 2007

Keywords

Crossrefs

Cf. A000041 (the partition numbers).
Partial sums of A232697.

Programs

Formula

a(n) = n + partition(n) = n + A000041(n).
a(n) = A207779(A000041(n)), n >= 1. - Omar E. Pol, Jul 17 2014

A328325 Expansion of Product_{k>=0} 1/(1 - x^(k^k)).

Original entry on oeis.org

1, 2, 3, 4, 6, 8, 10, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, 50, 55, 60, 66, 72, 78, 84, 91, 98, 105, 113, 122, 131, 140, 150, 161, 172, 183, 195, 208, 221, 234, 248, 263, 278, 293, 309, 326, 343, 360, 378, 397, 416, 435, 455, 476, 497, 519, 542, 566, 590, 615, 641, 668, 695
Offset: 0

Views

Author

Seiichi Manyama, Oct 12 2019

Keywords

Comments

Partial sums of A328301.

Examples

			G.f.: 1/(1-x) + x/(1-x)^2 + x^4/((1-x)^2*(1-x^4)) + x^27/((1-x)^2*(1-x^4)*(1-x^27)) + ... .
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
          b(n, i-1)+(p-> `if`(p>n, 0, b(n-p, i)))(i^i))
        end:
    a:= proc(n) option remember; `if`(n<2, n+1, a(n-1)+
          b(n, floor((t-> t/LambertW(t))(log(n)))))
        end:
    seq(a(n), n=0..100);  # Alois P. Heinz, Oct 12 2019
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1, b[n, i-1] + With[{p = i^i}, If[p > n, 0, b[n-p, i]]]];
    a[n_] := a[n] = If[n < 2, n+1, a[n-1] + b[n, Floor[PowerExpand[Log[n]/ ProductLog[Log[n]]]]]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Sep 14 2022, after Alois P. Heinz *)
  • PARI
    N=99; x='x+O('x^N); m=1; while(N>=m^m, m++); Vec(1/prod(k=0, m-1, 1-x^k^k))

Formula

a(n) = Sum_{k=0..n} A328301(k).
G.f.: 1/(1-x) + Sum_{n>0} x^(n^n) / Product_{k=0..n} (1 - x^(k^k)).
Showing 1-3 of 3 results.